Skip to main content
Log in

Extended Harnack inequalities with exceptional sets and a boundary Harnack principle

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

Harnack’s inequality is one of the most fundamental inequalities for positive harmonic functions and has been extended to positive solutions of general elliptic equations and parabolic equations. This article gives a different generalization; namely, we generalize Harnack chains rather than equations. More precisely, we allow a small exceptional set and yet obtain a similar Harnack inequality. The size of an exceptional set is measured by capacity. The results are new even for classical harmonic functions. Our extended Harnack inequality includes information about the boundary behavior of positive harmonic functions. It yields a boundary Harnack principle for a very nasty domain whose boundary is given locally by the graph of a function with modulus of continuity worse than Hölder continuity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Aikawa, Norm estimate of Green operator, perturbation of Green function and integrability of superharmonic functions, Math. Ann. 312 (1998), 289–318.

    Article  MATH  MathSciNet  Google Scholar 

  2. H. Aikawa, Boundary Harnack principle and Martin boundary for a uniform domain, J. Math. Soc. Japan 53 (2001), 119–145.

    Article  MATH  MathSciNet  Google Scholar 

  3. H. Aikawa, Equivalence between the boundary Harnack principle and the Carleson estimate, Math. Scand. 103 (2008), 61–76.

    MATH  MathSciNet  Google Scholar 

  4. H. Aikawa, Boundary Harnack principle and the quasihyperbolic boundary condition, Sobolev Spaces in Mathematics. II, Springer, New York, 2009, pp. 19–30.

    Google Scholar 

  5. H. Aikawa, Modulus of continuity of the Dirichlet solutions, Bull. Lond. Math. Soc. 42 (2010), 857–867.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Ancona, Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien, Ann. Inst. Fourier (Grenoble) 28 (1978), 169–213.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. H. Armitage and S. J. Gardiner, Classical Potential Theory, Springer-Verlag London Ltd., London, 2001.

    Book  MATH  Google Scholar 

  8. R. Bañuelos, R. F. Bass, and K. Burdzy, Hölder domains and the boundary Harnack principle, Duke Math. J. 64 (1991), 195–200.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. F. Bass and K. Burdzy, A boundary Harnack principle in twisted Hölder domains, Ann. of Math. (2) 134 (1991), 253–276.

    Article  MATH  MathSciNet  Google Scholar 

  10. R. F. Bass and K. Burdzy, Lifetimes of conditioned diffusions, Probab. Theory Related Fields 91 (1992), 405–443.

    Article  MATH  MathSciNet  Google Scholar 

  11. B. E. J. Dahlberg, Estimates of harmonic measure, Arch. Rational Mech. Anal. 65 (1977), 275–288.

    Article  MATH  MathSciNet  Google Scholar 

  12. B. Fuglede, Le théorème du minimax et la théorie fine du potentiel, Ann. Inst. Fourier (Grenoble) 15 (1965), 65–88.

    Article  MATH  MathSciNet  Google Scholar 

  13. P. Gyrya and L. Saloff-Coste, Neumann and Dirichlet heat kernels in inner uniform domains, Astérisque (2011), no. 336.

  14. T. Itoh, Modulus of continuity of p-Dirichlet solutions in a metric measure space, Ann. Acad. Sci. Fenn. Math. 37 (2012), 339–355.

    Article  MATH  MathSciNet  Google Scholar 

  15. H. Shiga, Riemann mappings of invariant components of Kleinian groups, J. Lond. Math. Soc. (2) 80 (2009), 716–728.

    Article  MATH  MathSciNet  Google Scholar 

  16. H. Shiga, Modulus of continuity, a Hardy-Littlewood theorem and its application, Infinite Dimensional Teichmüller Spaces and Moduli Spaces, Res. Inst. Math. Sci. (RIMS), Kyoto, 2010, pp. 127–133.

  17. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J., 1970.

    MATH  Google Scholar 

  18. J. M. G. Wu, Comparisons of kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domains, Ann. Inst. Fourier (Grenoble) 28 (1978), 147–167.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Aikawa.

Additional information

This work was supported in part by JSPS KAKENHI (Grant-in-Aid for Scientific Research) (A) 20244007.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aikawa, H. Extended Harnack inequalities with exceptional sets and a boundary Harnack principle. JAMA 124, 83–116 (2014). https://doi.org/10.1007/s11854-014-0028-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-014-0028-3

Keywords

Navigation