Skip to main content
Log in

Equipartition of energy in geometric scattering theory

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

In this note, we use an elementary argument to show that the existence and unitarity of radiation fields implies asymptotic partition of energy for the corresponding wave equation. This argument establishes the equipartition of energy for the wave equation on scattering manifolds, asymptotically hyperbolic manifolds, asymptotically complex hyperbolic manifolds, and the Schwarzschild spacetime. It also establishes equipartition of energy for the energy-critical semilinear wave equation on ℝ3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hajer Bahouri and Patrick Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math. 121 (1999), 131–175.

    Article  MATH  MathSciNet  Google Scholar 

  2. Hajer Bahouri and Jalal Shatah, Decay estimates for the critical semilinear wave equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998), 783–789.

    Article  MATH  MathSciNet  Google Scholar 

  3. Dean Baskin and Antônio Sá Barreto, Radiation fields for semilinear wave equations, Trans. Amer. Math. Soc., to appear; arXiv:1208.2743[math.AP].

  4. Dean Baskin and Fang Wang, Radiation fields on Schwarzschild spacetime, Commun. Math. Phys., to appear. DOI 10.1007/s00220-014-2047-4.

  5. A. R. Brodsky, On the asymptotic behavior of solutions of the wave equations, Proc. Amer. Math. Soc. 18 (1967), 207–208.

    Article  MATH  MathSciNet  Google Scholar 

  6. George Dassios and Manoussos Grillakis, Equipartition of energy in scattering theory, SIAM J. Math. Anal. 14 (1983), 915–924.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. J. Duffin, Equipartition of energy in wave motion, J. Math. Anal. Appl. 32 (1970), 386–391.

    Article  MATH  MathSciNet  Google Scholar 

  8. C. L. Epstein, R. B. Melrose, and G. A. Mendoza, Resolvent of the Laplacian on strictly pseudoconvex domains, Acta Math. 167 (1991), 1–106.

    Article  MATH  MathSciNet  Google Scholar 

  9. F. G. Friedlander, Radiation fields and hyperbolic scattering theory, Math. Proc. Cambridge Philos. Soc. 88 (1980), 483–515.

    Article  MATH  MathSciNet  Google Scholar 

  10. F. G. Friedlander, Notes on the wave equation on asymptotically Euclidean manifolds, J. Funct. Anal. 184 (2001), 1–18.

    Article  MATH  MathSciNet  Google Scholar 

  11. Zhou Gang and Michael I. Weinstein, Equipartition of mass in nonlinear Schrödinger/Gross-Pitaevskii equations, Appl. Math. Res. Express. AMRX 2011, 123–181.

  12. C. Robin Graham and John M. Lee, Einstein metrics with prescribed conformal infinity on the ball, Adv. Math. 87 (1991), 186–225.

    Article  MATH  MathSciNet  Google Scholar 

  13. Manoussos Grillakis, Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity, Ann. of Math. (2) 132 (1990), 485–509.

    Article  MATH  MathSciNet  Google Scholar 

  14. Colin Guillarmou and Antônio Sá Barreto, Scattering and inverse scattering on ACH manifolds, J. Reine Angew. Math. 622 (2008), 1–55.

    Article  MATH  MathSciNet  Google Scholar 

  15. Andrew Hassell and András Vasy, The spectral projections and the resolvent for scattering metrics, J. Anal. Math. 79 (1999), 241–298.

    Article  MATH  MathSciNet  Google Scholar 

  16. Mark S. Joshi and Antônio Sá Barreto, Inverse scattering on asymptotically hyperbolic manifolds, Acta Math. 184 (2000), 41–86.

    Article  MATH  MathSciNet  Google Scholar 

  17. Rafe R. Mazzeo, The Hodge cohomology of a conformally compact metric, J. Differential Geom. 28 (1988), 309–339.

    MATH  MathSciNet  Google Scholar 

  18. Rafe Mazzeo, Unique continuation at infinity and embedded eigenvalues for asymptotically hyperbolic manifolds, Amer. J. Math. 113 (1991), 25–45.

    Article  MATH  MathSciNet  Google Scholar 

  19. Rafe R. Mazzeo and Richard B. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal. 75 (1987), 260–310.

    Article  MATH  MathSciNet  Google Scholar 

  20. Richard Melrose, Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces, Spectral and Scattering Theory, Dekker, New York, 1994, pp. 85–130.

    Google Scholar 

  21. Antônio Sá Barreto, Radiation fields on asymptotically Euclidean manifolds, Comm. Partial Differential Equations, 28 (2003), 1661–1673.

    Article  MATH  MathSciNet  Google Scholar 

  22. Antônio Sá Barreto, Radiation fields, scattering, and inverse scattering on asymptotically hyperbolic manifolds, Duke Math. J. 129 (2005), 407–480.

    Article  MATH  MathSciNet  Google Scholar 

  23. Antônio Sá Barreto, A support theorem for the radiation fields on asymptotically Euclidean manifolds, Math. Res. Lett. 15 (2008), 973–991.

    Article  MATH  MathSciNet  Google Scholar 

  24. Antônio Sá Barreto and Jared Wunsch, The radiation field is a Fourier integral operator, Ann. Inst. Fourier (Grenoble) 55 (2005), 213–227.

    Article  MATH  MathSciNet  Google Scholar 

  25. Jalal Shatah and Michael Struwe, Well-posedness in the energy space for semilinear wave equations with critical growth, Internat. Math. Res. Notices 1994, 303–309.

  26. Luis Vega and Nicola Visciglia, On the equipartition of energy for the critical NLW, J. Funct. Anal. 255 (2008), 726–754.

    Article  MATH  MathSciNet  Google Scholar 

  27. Fang Wang, Radiation field for Einstein vacuum equations with spacial dimension n ≥ 4, arXiv:1304.0407[math.AP].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean Baskin.

Additional information

This research was supported by NSF postdoctoral fellowship DMS-1103436.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baskin, D. Equipartition of energy in geometric scattering theory. JAMA 123, 341–353 (2014). https://doi.org/10.1007/s11854-014-0023-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-014-0023-8

Keywords

Navigation