Skip to main content
Log in

A nilpotent IP polynomial multiple recurrence theorem

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We generalize the IP-polynomial Szemerédi theorem due to Bergelson and McCutcheon and the nilpotent Szemerédi theorem due to Leibman. Important tools in our proof include a generalization of Leibman’s result that polynomial mappings into a nilpotent group form a group and a multiparameter version of the nilpotent Hales-Jewett theorem due to Bergelson and Leibman.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Bergelson, Weakly mixing PET, Ergodic Theory Dynam. Systems 7 (1987), 337–349.

    Article  MATH  MathSciNet  Google Scholar 

  2. V. Bergelson, A. Blass, and N. Hindman, Partition theorems for spaces of variable words, Proc. London Math. Soc. (3) 68 (1994), 449–476.

    Article  MATH  MathSciNet  Google Scholar 

  3. V. Bergelson, H. Furstenberg, and R. McCutcheon, IP-sets and polynomial recurrence, Ergodic Theory Dynam. Systems 16 (1996), 963–974.

    Article  MATH  MathSciNet  Google Scholar 

  4. V. Bergelson, I. J. Håland Knutson, and R. McCutcheon, IP-systems, generalized polynomials and recurrence, Ergodic Theory Dynam. Systems 26 (2006), 999–1019.

    Article  MATH  MathSciNet  Google Scholar 

  5. V. Bergelson and A. Leibman, Topological multiple recurrence for polynomial configurations in nilpotent groups, Adv. Math. 175 (2003), 271–296.

    Article  MATH  MathSciNet  Google Scholar 

  6. V. Bergelson and A. Leibman, Distribution of values of bounded generalized polynomials, Acta Math. 198 (2007), 155–230.

    Article  MATH  MathSciNet  Google Scholar 

  7. V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden’s and Szemerédi’s theorems, J. Amer. Math. Soc. 9 (1996), 725–753.

    Article  MATH  MathSciNet  Google Scholar 

  8. V. Bergelson and A. Leibman, Set-polynomials and polynomial extension of the Hales-Jewett theorem, Ann. of Math. (2) 150 (1999), 33–75.

    Article  MATH  MathSciNet  Google Scholar 

  9. V. Bergelson and R. McCutcheon, An ergodic IP polynomial Szemerédi theorem, Mem. Amer. Math. Soc. 146 (2000), no. 695.

    MathSciNet  Google Scholar 

  10. V. Bergelson and R. McCutcheon, Idempotent ultrafilters, multiple weak mixing and Szemerédis theorem for generalized polynomials, J. Analyse Math. 111 (2010), 77–130.

    Article  MATH  MathSciNet  Google Scholar 

  11. H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256.

    Article  MATH  MathSciNet  Google Scholar 

  12. H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, N.J., 1981.

    MATH  Google Scholar 

  13. H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for IP-systems and combinatorial theory, J. Analyse Math. 45 (1985), 117–168.

    Article  MATH  MathSciNet  Google Scholar 

  14. H. Furstenberg and Y. Katznelson, A density version of the Hales-Jewett theorem, J. Analyse Math. 57 (1991), 64–119.

    MATH  MathSciNet  Google Scholar 

  15. H. Furstenberg and B. Weiss, Topological dynamics and combinatorial number theory, J. Analyse Math. 34 (1978), 61–85.

    Article  MATH  MathSciNet  Google Scholar 

  16. B. Green and T. Tao, The quantitative behaviour of polynomial orbits on nilmanifolds, Ann. of Math. (2) 175 (2012), 465–540.

    Article  MATH  MathSciNet  Google Scholar 

  17. B. Green, T. Tao, and T. Ziegler, An inverse theorem for the Gowers U s+1[N]-norm, Ann. of Math. (2) 176 (2012), 1231–1372.

    Article  MATH  MathSciNet  Google Scholar 

  18. N. Hindman, Finite sums from sequences within cells of a partition of N, J. Combinatorial Theory Ser. A 17 (1974), 1–11.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Leibman, Multiple recurrence theorem for measure preserving actions of a nilpotent group, Geom. Funct. Anal. 8 (1998), 853–931.

    Article  MATH  MathSciNet  Google Scholar 

  20. A. Leibman, Polynomial mappings of groups, Israel J. Math. 129 (2002), 29–60.

    Article  MATH  MathSciNet  Google Scholar 

  21. R. McCutcheon, FVIP systems and multiple recurrence, Israel J. Math. 146 (2005), 157–188.

    Article  MATH  MathSciNet  Google Scholar 

  22. K. R. Milliken, Ramsey’s theorem with sums or unions, J. Combinatorial Theory Ser. A 18 (1975), 276–290.

    Article  MATH  MathSciNet  Google Scholar 

  23. W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, Interscience Publishers, New York-London-Sydney, 1966.

    MATH  Google Scholar 

  24. J. J. Rotman, An Introduction to the Theory of Groups, Springer-Verlag, New York, 1995.

    Book  MATH  Google Scholar 

  25. E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 199–245.

    MATH  MathSciNet  Google Scholar 

  26. A. D. Taylor, A canonical partition relation for finite subsets of ω, J. Combinatorial Theory Ser. A 21 (1976), 137–146.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zorin-Kranich, P. A nilpotent IP polynomial multiple recurrence theorem. JAMA 123, 183–225 (2014). https://doi.org/10.1007/s11854-014-0018-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-014-0018-5

Keywords

Navigation