Skip to main content
Log in

Spectral properties of a limit-periodic Schrödinger operator in dimension two

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We study the Schrödinger operator H = −Δ + V(x) in dimension two, V(x) being a limit-periodic potential. We prove that the spectrum of H contains a semiaxis, and there is a family of generalized eigenfunctions at every point of this semiaxis with the following properties. First, the eigenfunctions are close to plane waves exp(\(i\left\langle {\overrightarrow k ,\overrightarrow x } \right\rangle \)) at the high energy region. Second, the isoenergetic curves in the space of momenta \(\overrightarrow k \) corresponding to these eigenfunctions have the form of slightly distorted circles with holes (Cantor type structure). Third, the spectrum corresponding to the eigenfunctions (the semiaxis) is absolutely continuous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Avron and B. Simon, Almost periodic Schrödinger operators I. Limit periodic potentials, Comm. Math. Physics 82 (1981), 101–120.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Avron and B. Simon, Transient and recurrent spectrum, J. Funct. Anal. 43 (1981), 1–31.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Avron and B. Simon, Almost periodic Schrödinger operators II. The integrated density of states, Duke Math. J. 50 (1983), 369–391.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equation, Ann. of Math. (2) 148 (1998), 363–439.

    Article  MathSciNet  MATH  Google Scholar 

  5. Yu. P. Chuburin, On the multidimensional discrete Schrödinger equation with a limit-periodic potential, Theoret. and Math. Phys. 102 (1995), 53–59.

    Article  MathSciNet  MATH  Google Scholar 

  6. V. A. Chulaevskiĭ, On perturbation of a Schrödinger operator with periodic potential, Russian Math. Surv. 36(5) (1981), 143–144.

    Article  Google Scholar 

  7. D. Damanik and Zh. Gan, Spectral properties of limit-periodic Schrödinger operators, Commun. Pure Appl. Anal. 10 (2011), 859–871.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Gallavotti, Perturbation theory for classical Hamiltonian systems, Scaling and Self-Similarity in Physics, Birkhäuser Boston, Boston, MA, 1983, pp. 359–426.

  9. I.M. Gel'fand, Expansion in eigenfunctions of an equation with periodic coefficients, Dokl. Akad. Nauk SSSR 73 (1950), 1117–1120.

    MATH  Google Scholar 

  10. Yu. Karpeshina, Perturbation Theory for the Schrödinger Operator with a Periodic Potential, Lecture Notes in Math. 1663, Springer, Berlin, 1997.

    MATH  Google Scholar 

  11. Yu. E. Karpeshina, On the density of states for a periodic Schrödinger operator, Ark. Mat. 38 (2000), 111–137.

    Article  MathSciNet  MATH  Google Scholar 

  12. Yu. Karpeshina and Y. R. Lee, Spectral properties of polyharmonic operators with limit-periodic potential in dimension two, J. Anal. Math. 102 (2007), 225–310.

    Article  MathSciNet  MATH  Google Scholar 

  13. Yu. Karpeshina and Y. R. Lee, Absolutely continuous spectrum of a polyharmonic operator with a limit periodic potential in dimension two, Comm. Partial Differential Equations, 33 (2008), 1711–1728.

    Article  MathSciNet  MATH  Google Scholar 

  14. Yu. Karpeshina and Y. R. Lee, Spectral properties of a limit-periodic Schrdinger operator in dimension two, arXiv:1008.4632 [math-ph].

  15. E. Krätzel, Lattice Points, Kluwer Academic Publishers Group, Dordrecht, 1988.

    MATH  Google Scholar 

  16. S. A. Molchanov and V. A. Chulaevskii, Structure of the spectrum of lacunary limit-periodic Schrödinger operator, Funct. Anal. Appl. 18 (1984), 343–344.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Moser, An example of the Schroedinger equation with almost-periodic potential and nowhere dense spectrum, Comment. Math. Helv. 56 (1981), 198–224.

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Parnovski and R. Shterenberg Complete asymptotic expansion of the integrated density of states of multidimensional almost-periodic Schrodinger operators, Ann. of Math. (2) 176 (2012), 1039–1096.

    Article  MathSciNet  MATH  Google Scholar 

  19. L. A. Pastur and A. Figotin, Spectra of Random and Almost-Periodic Operators, Springer-Verlag, Berlin, 1992.

    Book  MATH  Google Scholar 

  20. L. A. Pastur and V. A. Tkachenko, On the spectral theory of the one-dimensional Schrödinger operator with limit-periodic potential, Dokl. Akad. Nauk SSSR 279 (1984), 1050–1053; Engl. transl.: Soviet Math. Dokl. 30 (1984), 773–776.

    MathSciNet  Google Scholar 

  21. L. A. Pastur and V. A. Tkachenko, Spectral theory of a class of one-dimensional Schrödinger operators with limit-periodic potentials, Trans. Moscow Math. Soc. 51 (1989), 115–166.

    MathSciNet  Google Scholar 

  22. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. IV, 3rd ed., Academic Press, 1987.

  23. G. V. Rozenblum, M. A. Shubin and M. Z. Solomyak, Spectral Theory of Differential Operators, Springer, Berlin, 1994.

    Google Scholar 

  24. A. V. Savin, Asymptotic expansion of the density of states for one-dimensional Schrödinger and Dirac operators with almost periodic and random potentials Sb. Nauchn. Trr. I.F.T.P., Moscow, 1988.

    Google Scholar 

  25. D. Shenk and M. Shubin Asymptotic expansion of the state density and the spectral function of the Hill operator Math. USSR-Sb. 56 (1987), 492–515.

    Article  Google Scholar 

  26. M. A. Shubin The density of states for selfadjoint elliptic operators with almost periodic coefficients. Trudy Sem. Petrovsk. 3 (1978), 243–275.

    MATH  Google Scholar 

  27. M. A. Shubin, Spectral theory and index of elliptic operators with almost periodic coefficients, Russ. Math. Surveys 34(2) (1979), 109–158.

    Article  MathSciNet  MATH  Google Scholar 

  28. B. Simon, Almost periodic Schrödinger operators: A review, Adv. in Appl. Math. 3 (1982), 463–490.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. M. Skriganov and A. V. Sobolev, On the spectrum of polyharmonic operators with limit-periodic potentials, Algebra i Analiz 17 (2005), 164–189; Eng. transl.: St. Petersburg Math. J. 17 (2006), 815–833.

    MathSciNet  Google Scholar 

  30. L. E. Thomas and S. R. Wassel, Semiclassical approximation for Schrödinger operators at high energy, Schroödinger Operators. The Quantum Mechanical Many-Body Problem, Lecture Notes in Physics 403, Springer-Verlag, 1992, pp. 194–210.

  31. L. E. Thomas and S. R. Wassel, Stability of Hamiltonian systems at high energy, J. Math. Phys. 33 (1992), 3367–3373.

    Article  MathSciNet  MATH  Google Scholar 

  32. L. Zelenko, On a generic topological structure of the spectrum to one-dimensional Schrödinger operators with complex limit-periodic potentials, Integral Equations Operator Theory, 50 (2004), 393–430.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulia Karpeshina.

Additional information

Supported in part by NSF grant DMS-1201048.

Supported by the National Research Foundation of Korea (NRF)-grant 2009-0064945.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karpeshina, Y., Lee, YR. Spectral properties of a limit-periodic Schrödinger operator in dimension two. JAMA 120, 1–84 (2013). https://doi.org/10.1007/s11854-013-0014-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-013-0014-1

Keywords

Navigation