Skip to main content
Log in

Ergodicity, numerical range, and fixed points of holomorphic mappings

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

In this paper, we study the local structure of the fixed point set of a holomorphic mapping defined on a (not necessarily bounded or convex) domain in a complex Banach space, using ergodic theory of linear operators and the nonlinear numerical range introduced by L. A. Harris. We provide several constructions of holomorphic retractions and a generalization of Cartan’s Uniqueness Theorem. We also estimate the deviation of a holomorphic mapping from its linear approximation, the Fréchet derivative at a fixed point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abate, Iteration Theory of Holomorphic Maps on Taut Manifolds, Mediterranean Press, Rende, 1989.

    MATH  Google Scholar 

  2. D. Aharonov, S. Reich, and D. Shoikhet, Flow invariance conditions for holomorphic mappings in Banach spaces, Math. Proc. R. Ir. Acad. 99A (1999), 93–104.

    MathSciNet  MATH  Google Scholar 

  3. E. Bedford, On the automorphism group of a Stein manifold, Math. Ann. 266 (1983), 215–227.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Cartan, Sur les rétractions d’une variété, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), 715.

    MathSciNet  MATH  Google Scholar 

  5. S. B. Chae, Holomorphy and Calculus in Normed Spaces, Marcel Dekker, New York, 1985.

    MATH  Google Scholar 

  6. S. Dineen, The Schwarz Lemma, Clarendon Press, Oxford, 1989.

    MATH  Google Scholar 

  7. K. Fan, A remark on orthogonality of eigenvectors, Linear and Multilinear Algebra 23 (1988), 283–284.

    Article  MathSciNet  MATH  Google Scholar 

  8. K. Goebel and S. Reich, Iterating holomorphic self-mappings of the Hilbert ball, Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), 349–352.

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York, 1984.

    MATH  Google Scholar 

  10. A. Gomilko, I. Wróbel, and J. Zemánek, Numerical ranges in a strip, in Operator Theory 20, Theta, Bucharest, 2006, pp. 111–121.

    Google Scholar 

  11. S. Grabiner and J. Zemánek, Ascent, descent, and ergodic properties of linear operators, J. Operator Theory 48 (2002), 69–81.

    MathSciNet  MATH  Google Scholar 

  12. K. E. Gustafson and D. K. M. Rao, Numerical Range, Springer, New York, 1997.

    Book  Google Scholar 

  13. U. Haagerup and P. de la Harpe, The numerical radius of a nilpotent operator on a Hilbert space, Proc. Amer. Math. Soc. 115 (1992), 371–379.

    Article  MathSciNet  MATH  Google Scholar 

  14. L. A. Harris, A continuous form of Schwarz’s lemma in normed linear spaces, Pacific J. Math. 38 (1971), 635–639.

    Article  MathSciNet  MATH  Google Scholar 

  15. L. A. Harris, The numerical range of holomorphic functions in Banach spaces, Amer. J. Math. 93 (1971), 1005–1019.

    Article  MathSciNet  MATH  Google Scholar 

  16. L. A. Harris, S. Reich, and D. Shoikhet, Dissipative holomorphic functions, Bloch radii, and the Schwarz lemma, J. Analyse Math. 82 (2000), 221–232.

    Article  MathSciNet  MATH  Google Scholar 

  17. E. Hille, Remarks on ergodic theorems, Trans. Amer. Math. Soc. 57 (1945), 246–269.

    Article  MathSciNet  MATH  Google Scholar 

  18. E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc., Providence, RI, 1957.

  19. C. R. Johnson, Normality and the numerical range, Linear Algebra Appl. 15 (1976), 89–94.

    Article  MATH  Google Scholar 

  20. T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 261–322.

    Article  MathSciNet  MATH  Google Scholar 

  21. V. Khatskevich and D. Shoikhet, Differentiable Operators and Nonlinear Equations, Birkhäuser, Basel, 1994.

    Book  MATH  Google Scholar 

  22. S. G. Krein, Linear Differential Equations in Banach Space, Amer. Math. Soc., Providence, RI, 1971.

    Google Scholar 

  23. G. Kresin and V. G. Maz’ya, Sharp Real-Part Theorems, A Unified Approach, Lecture Notes in Math. 1903, Springer, Berlin, 2007.

    MATH  Google Scholar 

  24. T. Kuczumow, S. Reich, and D. Shoikhet, The existence and non-existence of common fixed points for commuting families of holomorphic mappings, Nonlinear Anal. 43 (2001), 45–59.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc. 43 (1974), 337–340.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Lin, On the uniform ergodic theorem. II, Proc. Amer. Math. Soc. 46 (1974), 217–225.

    Article  MathSciNet  MATH  Google Scholar 

  27. Yu. I. Lyubich, A remark on the stability of complex dynamical systems, Izv. Vyssh. Uchebn. Zaved. Mat. 1983 no. 10, 49–50 (Russian), English translation: Soviet Math. (Iz. VUZ) 27 (1983) no. 10, 62–64.

  28. Yu. I. Lyubich and J. Zemánek, Precompactness in the uniform ergodic theory, Studia Math. 112 (1994), 89–97.

    MathSciNet  MATH  Google Scholar 

  29. P. Mazet, Les points fixes d’une application holomorphe d’un domaine borné dans lui-même admettent une base de voisinages convexes stables, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), 197–199.

    MathSciNet  MATH  Google Scholar 

  30. P. Mazet et J. P. Vigué, Points fixes d’une application holomorphe d’un domaine borné dans lui-même, Acta Math. 166 (1991), 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  31. C. A. McCarthy, A strong resolvent condition does not imply power-boundedness, Chalmers Institute of Technology and University of Göteborg, Preprint 15, 1971.

  32. A. Montes-Rodríguez, J. Sánchez-Álvarez, and J. Zemánek, Uniform Abel-Kreiss boundedness and the extremal behaviour of the Volterra operator, Proc. London Math. Soc. (3) 91 (2005), 761–788.

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Mujica, Complex Analysis in Banach Spaces, North-Holland, Amsterdam, 1986.

    MATH  Google Scholar 

  34. O. Nevanlinna, Resolvent conditions and powers of operators, Studia Math. 145 (2001), 113–134.

    Article  MathSciNet  MATH  Google Scholar 

  35. S. Reich and D. Shoikhet, Generation theory for semigroups of holomorphic mappings in Banach spaces, Abstr. Appl. Anal. 1 (1996), 1–44.

    Article  MathSciNet  MATH  Google Scholar 

  36. S. Reich and D. Shoikhet, Averages of holomorphic mappings and holomorphic retractions on convex hyperbolic domains, Studia Math. 130 (1998), 231–244.

    MathSciNet  MATH  Google Scholar 

  37. S. Reich and D. Shoikhet, Metric domains, holomorphic mappings and nonlinear semigroups, Abstr. Appl. Anal. 3 (1998), 203–228.

    Article  MathSciNet  MATH  Google Scholar 

  38. S. Reich and D. Shoikhet, Nonlinear Semigroups, Fixed Points, and Geometry of Domains in Banach Spaces, Imperial College Press, London, 2005.

    Book  MATH  Google Scholar 

  39. W. Rudin, The fixed-point sets of some holomorphic maps, Bull. Malaysian Math. Soc. (2) 1 (1978), 25–28.

    MathSciNet  MATH  Google Scholar 

  40. W. Rudin, Function Theory in the Unit Ball ofn, Springer, Berlin, 1980.

    Google Scholar 

  41. I. Shafrir, Coaccretive operators and firmly nonexpansive mappings in the Hilbert ball, Nonlinear Anal. 18 (1982), 637–648.

    Article  MathSciNet  Google Scholar 

  42. D. Shoikhet, The invariance principle in the fixed point theory of analytic operators, Institute of Physics, Siberian Branch of the Academy of Sciences of the USSR, Preprint No. 33M, 1986.

  43. A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, second edition, Wiley, New York, 1980.

    MATH  Google Scholar 

  44. Yu Tomilov and J. Zemánek, A new way of constructing examples in operator ergodic theory, Math. Proc. Cambridge Philos. Soc. 137 (2004), 209–225.

    Article  MathSciNet  MATH  Google Scholar 

  45. D. Tsedenbayar, On the power boundedness of certain Volterra operator pencils, Studia Math. 156 (2003), 59–66.

    Article  MathSciNet  MATH  Google Scholar 

  46. E. Vesentini, Iterations of holomorphic mappings, Uspekhi Mat. Nauk 40 (1985) no. 4(244), 13–16 (Russian). English translation: Russian Math. Surveys 40 (1985) no. 4, 7–11.

    MathSciNet  Google Scholar 

  47. E. Vesentini, Conservative operators, in Partial Differential Equations and Applications, Marcel Dekker, New York, 1996, pp. 303–311.

    Google Scholar 

  48. J. P. Vigué, Fixed points of holomorphic mappings in a bounded convex domain inn, in Several Complex Variables and Complex Geometry, Part 2, Amer. Math. Soc., Providence, RI, 1991, pp. 579–582.

    Chapter  Google Scholar 

  49. T. Yoshino, Introduction to Operator Theory, Longman Scientific & Technical, Harlow, 1993.

    MATH  Google Scholar 

  50. J. Zemánek, On the Gel’fand-Hille theorems, in Functional Analysis and Operator Theory, Polish Acad. Sci., Warsaw, 1994, pp. 369–385.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simeon Reich.

Additional information

S. Reich was partially supported by the Israel Science Foundation (Grant 647/07), by the Fund for the Promotion of Research at the Technion, and by the Technion President’s Research Fund.

D. Shoikhet was partially supported by the European Commission Project TODEQ (MTKD-CT-2005-030042).

J. Zemánek has been supported several times by ORT Braude College and by the European Commission Project TODEQ (MTKD-CT-2005-030042).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reich, S., Shoikhet, D. & Zemánek, J. Ergodicity, numerical range, and fixed points of holomorphic mappings. JAMA 119, 275–303 (2013). https://doi.org/10.1007/s11854-013-0009-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-013-0009-y

Keywords

Navigation