Skip to main content
Log in

Embeddings of weighted sobolev spaces and generalized Caffarelli-Kohn-Nirenberg inequalities

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We characterize all the real numbers a, b, c and 1 ≤ p, q, r < ∞ such that the weighted Sobolev space

$$W_{\{ a,b\} }^{\{ q,q\} }({R^N}\backslash \{ 0\} ): = \{ u \in L_{loc}^1({R^N}\backslash \{ 0\} ):{\left| x \right|^{a/q}} \in {L^q}({R^{N),}}{\left| x \right|^{b/p}}\nabla u \in {({L^p}({R^N}))^N}\} $$

is continuously embedded into

$${L^r}({R^N};{\left| x \right|^c}dx): = \{ u \in L_{loc}^1({R^N}\backslash \{ 0\} ):{\left| x \right|^{c/r}}u \in {L^r}({R^N})\} $$

with norm ‖·‖ c,r . It turns out that, except when N ≥ 2 and a = c = bp = −N, such an embedding is equivalent to the multiplicative inequality

$${\left\| u \right\|_{c,r}} \le C\left\| {\nabla u} \right\|_{b,p}^\theta \left\| u \right\|_{a,q}^{1 - \theta }$$

for some suitable θ ∈ [0, 1], which is often but not always unique. If a, b, c > −N, then C 0 (ℝN) ⊂ W (q,p){a,b} (ℝN{0}) ∩ L r(ℝN; |x|c dx) and such inequalities for uC 0 (ℝN) are the well-known Caffarelli-Kohn-Nirenberg inequalities; but their generalization to W (q,p){a,b} (ℝN{0}) cannot be proved by a denseness argument. Without the assumption a, b, c > −N, the inequalities are essentially new, even when uC 0 (ℝN{0}), although a few special cases are known, most notably the Hardy-type inequalities when p = q.

In a different direction, the embedding theorem easily yields a generalization when the weights |x|a, |x|b and |x|c are replaced with more general weights w a ,w b and w c , respectively, having multiple power-like singularities at finite distance and at infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bakry, T. Coulhon, M. Ledoux, and L. Saloff-Coste, Sobolev inequalities in disguise, Indiana Univ. Math. J. 44 (1995), 1033–1074.

    Article  MathSciNet  Google Scholar 

  2. O. V. Besov, V. P. Il’in, and S. M. Nikol’skii, Integral Representations of Functions and Imbedding Theorems, Nauka, Moscow, 1975; English translation, Vol. I, Wiley, New York 1978.

    Google Scholar 

  3. O. V. Besov, V. P. Il’in, and S. M. Nikol’skii, Integral Representations of Functions and Imbedding Theorems, Nauka, Moscow, 1975; English translation, Vol. II, Wiley, New York 1979.

    Google Scholar 

  4. Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Vol. 1, Amer. Math. Soc., Providence, RI, 2000.

    Google Scholar 

  5. S. C. Bradley, Hardy inequalities with mixed norms, Canad. Math. Bull. 21 (1978), 405–408.

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Caffarelli, R. Kohn, and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math. 53 (1984), 259–275.

    MathSciNet  MATH  Google Scholar 

  7. F. Catrina and D. G. Costa, Sharp weighted-norm inequalities for functions with compact support inN{0}, J. Differential Equations 246 (2009), 164–182.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. G. Costa, Some new and short proofs for a class of Caffarelli-Kohn-Nirenberg type inequalities, J. Math. Anal. Appl. 337 (2008), 311–317.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. E. Gatto, C. E. Gutiérrez, and R. L. Wheeden, Fractional integrals on weighted Hp spaces, Trans. Amer. Math. Soc. 289 (1985), 575–589.

    MathSciNet  MATH  Google Scholar 

  10. V. Glaser, A. Martin, H. Grosse, and W. Thirring, A family of optimal conditions for the absence of bound states in a potential, Studies in Mathematical Physics, Princeton University Press, Princeton, NJ, 1976, pp. 169–194.

    Google Scholar 

  11. J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, Oxford, 1993.

    MATH  Google Scholar 

  12. V. P. Il’in, Some integral inequalities and their applications in the theory of differentiable functions of several variables, Mat. Sb. (N.S.) 54(96) (1961), 331–380.

    MathSciNet  Google Scholar 

  13. E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2) 118 (1983), 349–374.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Marcus and V. J. Mizel, Absolute continuity on tracks and mappings of Sobolev spaces, Arch. Rational Mech. Anal. 45 (1972), 294–320.

    Article  MathSciNet  MATH  Google Scholar 

  15. V. G. Maz’ja, Classes of domains and imbedding theorems for function spaces, Soviet Math. Dokl. 1 (1960), 882–885.

    MathSciNet  Google Scholar 

  16. V. G. Maz’ja, On certain integral inequalities for functions of many variables, J. Math. Sciences 1 (1973), 205–234.

    Article  MathSciNet  Google Scholar 

  17. V. G. Maz’ja, Sobolev Spaces, Springer-Verlag, Berlin, 1985.

    MATH  Google Scholar 

  18. V. Maz’ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Springer, Heidelberg, 2011.

    MATH  Google Scholar 

  19. B. Muckenhoupt, Hardy’s inequality with weights, Studia Math. 44 (1972), 31–38.

    MathSciNet  MATH  Google Scholar 

  20. E. Nakai, N. Tomita, and K. Yabuta, Density of the set of all infinitely differentiable functions with compact support in weighted Sobolev spaces, Sci. Math. Jpn. 60 (2004), 121–127.

    MathSciNet  MATH  Google Scholar 

  21. B. Opic and P. Gurka, N-dimensional Hardy inequality and imbedding theorems for weighted Sobolev spaces on unbounded domains, Function Spaces, Differential Operators and Nonlinear Analysis, Longman, Harlow, 1989, pp. 108–124.

  22. B. Opic and A. Kufner, Hardy-type Inequalities, Longman, Harlow, 1990.

    MATH  Google Scholar 

  23. J. Rákosník, Some remarks to anisotropic Sobolev spaces. I. Beiträge Anal. 13 (1979), 55–68.

    MATH  Google Scholar 

  24. S. Rolewicz, Metric Linear Spaces, second ed. D. Reidel Publishing Co., Dordrecht, 1985.

    MATH  Google Scholar 

  25. J. Serrin and D. E. Varberg, A general chain rule for derivatives and the change of variables formula for the Lebesgue integral, Amer. Math. Monthly 76 (1969), 514–520.

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Sinnamon, Weighted Hardy and Opial-type inequalities, J. Math. Anal. Appl. 160 (1991), 434–445.

    Article  MathSciNet  MATH  Google Scholar 

  27. G. Sinnamon and V. D. Stepanov, The weighted Hardy inequality: new proofs and the case p = 1, J. London Math. Soc. (2) 54 (1996), 89–101.

    Article  MathSciNet  MATH  Google Scholar 

  28. J. Su, Z. Q. Wang, and M. Willem, Weighted Sobolev embedding with unbounded and decaying radial potentials, J. Differential Equations 238 (2007), 201–219.

    Article  MathSciNet  MATH  Google Scholar 

  29. C. de la Vallée Poussin, Sur l’intégrale de Lebesgue, Trans. Amer. Math. Soc. 16 (1915), 435–501.

    MathSciNet  MATH  Google Scholar 

  30. V. V. Zhikov, On weighted Sobolev spaces, Sb. Math. 189 (1998), 1139–1170.

    Article  MathSciNet  MATH  Google Scholar 

  31. W. P. Ziemer, Weakly Differentiable Functions, Springer-Verlag, Berlin, 1989.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. Rabier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabier, P.J. Embeddings of weighted sobolev spaces and generalized Caffarelli-Kohn-Nirenberg inequalities. JAMA 118, 251–296 (2012). https://doi.org/10.1007/s11854-012-0035-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-012-0035-1

Keywords

Navigation