Skip to main content
Log in

A sup+inf inequality for Liouville type equations with weights

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We generalize a result by H. Brezis, Y. Y. Li and I. Shafrir [6] and obtain an Harnack type inequality for solutions of −Δu = |x|2α Ve u in Ω for Ω ⊂ ℝ2 open, α ∈ (−1, 0) and V any Lipschitz continuous function satisfying 0 < aVb < ∞ and ‖∇VA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Bartolucci, A ’sup + Cinf’ inequality for the equation −Δu = Ve u/|x|, Proc. Roy. Soc. Edinburgh, Sect. A 140 (2010), 1119–1139.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Bartolucci, A “sup + Cinf” inequality for Liouville-type equations with singular potentials, Math. Nachr. 284 (2011), 1639–1651.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Bartolucci, C. C. Chen, C. S. Lin, and G. Tarantello, Profile of blow up solutions to mean field equations with singular data, Comm. Partial Differential Equations 29 (2004), 1241–1265.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Bartolucci and E. Montefusco, Blow up analysis, existence and qualitative properties of solutions for the two dimensional Emden-Fowler equation with singular potential, Math. Meth. Appl. Sci. 30 (2007), 2309–2327.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Bartolucci and G. Tarantello, Liouville type equations with singular data and their applications to periodic multivortices for the electroweak theory, Comm. Math. Phys. 229 (2002), 3–47.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Brezis, Y. Y. Li, and I. Shafrir, A “sup+inf” inequality for some nonlinear elliptic equations invoving exponential nonlinearity, J. Funct. Anal. 115 (1993), 344–358.

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Brezis and F. Merle, Uniform estimates and blow-up behaviour for solutions of −Δu = V(x)e u in two dimensions, Comm. Partial Differential Equations 16 (1991), 1223–1253.

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Caglioti, P. L. Lions, C. Marchioro, and M. Pulvirenti, A special class of stationary flows for two dimensional Euler equations: a statistical mechanics description, Comm. Math. Phys. 143 (1992), 501–525.

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Caglioti, P. L. Lions, C. Marchioro, and M. Pulvirenti, A special class of stationary flows for two dimensional Euler equations: a statistical mechanics description. II, Comm. Math. Phys. 174 (1995), 229–260.

    Article  MathSciNet  MATH  Google Scholar 

  10. W. X. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991), 615–622.

    Article  MathSciNet  MATH  Google Scholar 

  11. W. X. Chen, C. Li, Prescribing Gaussian curvature on surfaces with conical singularities, J. Geom. Anal. 1 (1991), 359–372.

    Article  MathSciNet  MATH  Google Scholar 

  12. C. C. Chen and C. S. Lin, A sharp sup+inf inequality for a nonlinear elliptic equation in2, Comm. Anal. Geom. 6 (1998), 1–19.

    MathSciNet  MATH  Google Scholar 

  13. C. C. Chen and C. S. Lin, Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces Comm. Pure Appl. Math. 55 (2002), 728–771.

    Article  MATH  Google Scholar 

  14. C. C. Chen and C. S. Lin, Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math. 56 (2003), 1667–1727.

    Article  MathSciNet  MATH  Google Scholar 

  15. W. Ding, J. Jost, J. Li, and G. Wang, Existence results for mean field equations, Ann. Inst. Poincaré Anal. Non Linéaire 16 (1999), 653–666.

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Joyce and D. Montgomery, Negative temperature states for the two-dimensional guiding-centre plasma, J. Plasma Phys. 10 (1973), 107–121.

    Article  Google Scholar 

  17. M. K. H. Kiessling, Statistical mechanics of classical particles with logarithmic interaction, Comm. Pure Appl. Math. 46 (1993), 27–56.

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. Y. Li, Harnack type inequality: the method of moving planes, Comm. Math. Phys. 200 (1999), 421–444.

    Article  MathSciNet  MATH  Google Scholar 

  19. Y. Y. Li and I. Shafrir, Blow-up analysis for solutions of −Δu = V(x)e u in dimension two, Indiana Univ. Math. J. 43 (1994), 1255–1270.

    Article  MathSciNet  MATH  Google Scholar 

  20. C. S. Lin and C. L. Wang, Elliptic functions, Green functions, and the mean field equations on tori, Ann. of Math (2) 172 (2010), 911–954.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Prajapat and G. Tarantello, On a class of elliptic problems in2: symmetry and uniqueness results, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), 967–985.

    Article  MathSciNet  MATH  Google Scholar 

  22. I. Shafrir, A sup+inf inequality for the equation −Δu = Ve u, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), 159–164.

    MathSciNet  MATH  Google Scholar 

  23. R. A. Smith and T. M. O’Neil, Nonaxisymmetric thermal equilibria of a cylindrically bounded guiding-center plasma or discrete vortex system, Phys. Fluids B 2 (1990), 2961–2975.

    Article  Google Scholar 

  24. M. Struwe and G. Tarantello, On multivortex solutions in Chern-Simons gauge theory, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998), 109–121.

    MathSciNet  MATH  Google Scholar 

  25. G. Tarantello, A quantization property for blow up solutions of singular Liuoville-type equations, J. Funct. Anal. 219 (2005), 368–399.

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Tarantello, A Harnack inequality for Liouville type equations with singular sources, Indiana Univ. Math. J. 54 (2005), 599–615.

    Article  MathSciNet  MATH  Google Scholar 

  27. G. Tarantello, Analytical aspects of Liouville-type equations with singular sources, Stationary Partial Differential Equations, Vol. I, North Holland, Amsterdam, 2004, pp. 491–592.

    Chapter  Google Scholar 

  28. M. Troyanov, Metrics of constant curvature on a sphere with two conical singularities, Differential Geometry (Peñíscola 1988), Lecture Notes in Math. 1410, Springer, Berlin, 1989, pp. 296–306.

    Google Scholar 

  29. M. Troyanov, Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math. Soc. 324 (1991), 793–821.

    Article  MathSciNet  MATH  Google Scholar 

  30. G. Wolansky, On steady distributions of self-attracting clusters under friction and fluctuations, Arch. Rational Mech. Anal. 119 (1992), 355–391.

    Article  MathSciNet  MATH  Google Scholar 

  31. G. Wolansky, On the evolution of self-interacting clusters and applications to semilinear equations with exponential nonlinearity, J. Anal. Math. 59 (1992), 251–272.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Bartolucci.

Additional information

Research partially supported by FIRB-IDEAS project “Analysis and beyond”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartolucci, D. A sup+inf inequality for Liouville type equations with weights. JAMA 117, 29–46 (2012). https://doi.org/10.1007/s11854-012-0013-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-012-0013-7

Keywords

Navigation