Skip to main content
Log in

Long-time asymptotics of perturbed finite-gap Korteweg-de Vries solutions

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We apply the method of nonlinear steepest descent to compute the long-time asymptotics of solutions of the Korteweg-de Vries equation which are decaying perturbations of a quasi-periodic finite-gap background solution. We compute a nonlinear dispersion relation and show that the x/t plane splits into g+1 soliton regions which are interlaced by g + 1 oscillatory regions, where g + 1 is the number of spectral gaps.

In the soliton regions, the solution is asymptotically given by a number of solitons travelling on top of finite-gap solutions which are in the same isospectral class as the background solution. In the oscillatory region, the solution can be described by a modulated finite-gap solution plus a decaying dispersive tail. The modulation is given by a phase transition on the isospectral torus and is, together with the dispersive tail, explicitly characterized in terms of Abelian integrals on the underlying hyperelliptic curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Ablowitz and A. C. Newell, The decay of the continuous spectrum for solutions of the Korteweg-de Vries equation, J. Math. Phys. 14 (1973), 1277–1284.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. J. Ablowitz and H. Segur, Asymptotic solutions of the Korteweg-de Vries equation, Stud. Appl. Math. 57 (1977), 13–44.

    MathSciNet  Google Scholar 

  3. R. Beals and R. Coifman, Scattering and inverse scattering for first order systems, Comm. Pure Appl. Math. 37 (1984), 39–90.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Boutet de Monvel, I. Egorova, and G. Teschl, Inverse scattering theory for onedimensional Schrödinger operators with steplike finite-gap potentials, J. Amer. Math. Soc. 106 (2008), 271–316.

    MATH  Google Scholar 

  5. A. M. Budylin and V. S. Buslaev, Quasiclassical integral equations and the asymptotic behavior of solutions of the Korteweg-de Vries equation for large time values, Dokl. Akad. Nauk 348 (1996), 455–458.

    MathSciNet  Google Scholar 

  6. V. S. Buslaev, Use of the determinant representation of solutions of the Korteweg-de Vries equation for the investigation of their asymptotic behavior for large times, Uspekhi Mat. Nauk 36:4 (1981), 217–218.

    Google Scholar 

  7. V. S. Buslaev and V. V. Sukhanov, Asymptotic behavior of solutions of the Korteweg-de Vries equation, J. Soviet Math. 34 (1986), 1905–1920.

    Article  MATH  Google Scholar 

  8. P. A. Deift, A. R. Its, and X. Zhou, Long-time asymptotics for integrable nonlinear wave equations, in Important Developments in Soliton Theory, Springer, Berlin, 1993, pp. 181–204.

    Chapter  Google Scholar 

  9. P. Deift, S. Kamvissis, T. Kriecherbauer, and X. Zhou, The Toda rarefaction problem, Comm. Pure Appl. Math. 49 (1996), 35–83.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Deift, S. Venakides, and X. Zhou, The collisionless shock region for the long time behavior of solutions of the KdV equation, Comm. Pure Appl. Math. 47 (1994), 199–206.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Deift, X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert problems, Ann. of Math. (2) 137 (1983), 295–368.

    Article  MathSciNet  Google Scholar 

  12. I. Egorova, K. Grunert, and G. Teschl, On the Cauchy problem for the Korteweg-de Vries equation with steplike finite-gap initial data I. Schwartz-type perturbations, Nonlinearity 22 (2009), 1431–1457.

    Article  MathSciNet  MATH  Google Scholar 

  13. I. Egorova and G. Teschl, On the Cauchy problem for the Korteweg-de Vries equation with steplike finite-gap initial data II. Perturbations with finite moments, J. Anal. Math. 115 (2011), 71–102.

    Article  Google Scholar 

  14. I. Egorova and G. Teschl, A Paley-Wiener theorem for periodic scattering with applications to the Korteweg-de Vries equation, Zh. Mat. Fiz. Anal. Geom. 6 (2010), 21–33.

    MathSciNet  MATH  Google Scholar 

  15. H. Farkas and I. Kra, Riemann Surfaces, 2nd edition, Springer, New York, 1992.

    Book  MATH  Google Scholar 

  16. F. Gesztesy and H. Holden, Soliton Equations and their Algebro-Geometric Solutions, Volume I. (1+1)-Dimensional Continuous Models, Cambridge University Press, Cambridge, 2003.

    Book  Google Scholar 

  17. C. S. Gardner, J. M. Green, M. D. Kruskal, and R. M. Miura, A method for solving the Korteweg-de Vries equation, Phys. Rev. Lett. 19 (1967), 1095–1097.

    Article  MATH  Google Scholar 

  18. A. R. Its, Asymptotic behavior of the solutions to the nonlinear Schrödinger equation, and isomonodromic deformations of systems of linear differential equations, Soviet Math. Dokl. 24 (1981), 452–456.

    MATH  Google Scholar 

  19. I. Gohberg and N. Krupnik, One-Dimensional Linear Singular Integral Equations, Birkhäuser, Basel, 1992.

    Book  Google Scholar 

  20. K. Grunert and G. Teschl, Long-time asymptotics for the Korteweg-de Vries Equation via nonlinear steepest descent, Math. Phys. Anal. Geom. 12 (2009), 287–324.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Kamvissis and G. Teschl, Stability of periodic soliton equations under short range perturbations, Phys. Lett. A, 364 (2007), 480–483.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Kamvissis and G. Teschl, Stability of the periodic Toda lattice under short range perturbations, arXiv:0705.0346v5.

  23. E. A. Kuznetsov and A. V. Mikhaĭlov, Stability of stationary waves in nonlinear weakly dispersive media, Soviet Phys. JETP 40 (1975), 855–859.

    Google Scholar 

  24. H. Krüger and G. Teschl, Long-time asymptotics for the Toda lattice in the soliton region, Math. Z. 262 (2009), 585–602.

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Krüger and G. Teschl, Long-time asymptotics of the Toda lattice for decaying initial data revisited, Rev. Math. Phys. 21 (2009), 61–109.

    Article  MathSciNet  MATH  Google Scholar 

  26. H. Krüger and G. Teschl, Stability of the periodic Toda lattice in the soliton region, Int. Math. Res. Not. IMRN 2009, 3996–4031.

  27. S. V. Manakov, Nonlinear Frauenhofer diffraction, Soviet Phys. JETP 38 (1974), 693–696.

    MathSciNet  Google Scholar 

  28. V. A. Marchenko, Sturm-Liouville Operators and Applications, Birkhäuser, Basel, 1986.

    MATH  Google Scholar 

  29. A. Mikikits-Leitner and G. Teschl, Trace formulas for Schrödinger operators in connection with scattering theory for finite-gap backgrounds, in Spectral Theory and Analysis, Birkhäuser, Basel, 2011, pp. 107–124.

    Chapter  Google Scholar 

  30. Yu. Rodin, The Riemann Boundary Problem on Riemann Surfaces, D. Reidel Publishing Co., Dordrecht, 1988.

    Book  MATH  Google Scholar 

  31. A. B. Šabat, On the Korteweg-de Vries equation, Soviet Math. Dokl. 14 (1973), 1266–1270.

    MATH  Google Scholar 

  32. H. Segur and M. J. Ablowitz, Asymptotic solutions of nonlinear evolution equations and a Painlevé transcendent, Phys. D 3 (1981), 165–184.

    Article  MATH  Google Scholar 

  33. S. Tanaka, Korteweg-de Vries equation; Asymptotic behavior of solutions, Publ. Res. Inst. Math. Sci. 10 (1975), 367–379.

    Article  MATH  Google Scholar 

  34. G. Teschl, Algebro-geometric constraints on solitons with respect to quasi-periodic backgrounds, Bull. London Math. Soc. 39 (2007), 677–684.

    Article  MathSciNet  MATH  Google Scholar 

  35. G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices, Amer. Math. Soc., Providence, RI, 2000.

    MATH  Google Scholar 

  36. N. J. Zabusky and M. D. Kruskal, Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 15 (1965), 240–243.

    Article  MATH  Google Scholar 

  37. V. E. Zakharov and S. V. Manakov, Asymptotic behavior of nonlinear wave systems integrated by the inverse method, Soviet Phys. JETP 44 (1976), 106–112.

    MathSciNet  Google Scholar 

  38. X. Zhou, The Riemann-Hilbert problem and inverse scattering, SIAM J. Math. Anal. 20 (1989), 966–986.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Mikikits-Leitner.

Additional information

Research supported by the Austrian Science Fund (FWF) under Grant No. Y330.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikikits-Leitner, A., Teschl, G. Long-time asymptotics of perturbed finite-gap Korteweg-de Vries solutions. JAMA 116, 163–218 (2012). https://doi.org/10.1007/s11854-012-0005-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-012-0005-7

Keywords

Navigation