Skip to main content
Log in

Weyl functions of generalized dirac systems: Integral representation, the inverse problem and discrete interpolation

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We study self-adjoint Dirac systems and subclasses of canonical systems (which generalize Dirac systems) and obtain explicit and global solutions for direct and inverse problems. We also derive a local Borg-Marchenko-type theorem, integral representation of the Weyl function, and results on the interpolation of Weyl functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Alpay, I. Gohberg, M. A. Kaashoek, L. Lerer, and A. L. Sakhnovich, Krein systems in Modern Analysis and Applications, Vol. 1, Birkhäuser Verlag, Basel, 2009, pp. 27–63.

    Google Scholar 

  2. D. Alpay, I. Gohberg, M. A. Kaashoek, L. Lerer, and A. L. Sakhnovich, Krein systems and canonical systems on a finite interval: accelerants with a jump discontinuity at the origin and continuous potentials, Integral Equations Operator Theory 68 (2010), 115–150.

    Article  MathSciNet  MATH  Google Scholar 

  3. W. O. Amrein and D. B. Pearson, M-operators: a generalisation of Weyl-Titchmarsh theory, J. Comput. Appl. Math. 171 (2004), 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Z. Arov and H. Dym, J-contractive Matrix Valued Functions and Related Topics, Cambridge University Press, Cambridge, 2008.

    Book  MATH  Google Scholar 

  5. S. Avdonin, V. Mikhaylov and A. Rybkin, The boundary control approach to the Titchmarsh-Weyl m-function, I, The response operator and the A-amplitude, Comm. Math. Phys. 275 (2007), 791–803.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Boumenir and V. K. Tuan, The interpolation of the Titchmarsh-Weyl function, J. Math. Anal. Appl. 335 (2007), 72–78.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Chelkak and E. Korotyaev, Weyl-Titchmarsh functions of vector-valued Sturm-Liouville operators on the unit interval, J. Funct. Anal. 257 (2009), 1546–1588.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. L. Ciésliński, Algebraic construction of the Darboux matrix revisited, J. Phys. A 42 (2009), 404003.

    Article  MathSciNet  Google Scholar 

  9. S. Clark and F. Gesztesy, Weyl-Titchmarsh M-function asymptotics, local uniqueness results, trace formulas, and Borg-type theorems for Dirac operators, Trans. Amer. Math. Soc. 354 (2002), 3475–3534.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Clark and F. Gesztesy, On self-adjoint and J-self-adjoint Dirac-type operators: a case study, in Recent Advances in Differential Equations and Mathematical Physics, Contemp. Math. 42, Amer. Math. Soc., Providence, RI, 2006, pp. 103–140.

    Chapter  Google Scholar 

  11. S. Clark, F. Gesztesy and M. Zinchenko, Weyl-Titchmarsh theory and Borg-Marchenko-type uniqueness results for CMV operators with matrix-valued Verblunsky coefficients, Oper. Matrices 1(2007), 535–592.

    MathSciNet  MATH  Google Scholar 

  12. S. Clark, F. Gesztesy and M. Zinchenko, Borg-Marchenko-type uniqueness results for CMV operators, Skr. K. Nor. Vidensk. Selsk. 2008, 1–18.

  13. P. A. Deift, Applications of a commutation formula, Duke Math. J. 45 (1978), 267–310.

    Article  MathSciNet  MATH  Google Scholar 

  14. W. N. Everitt and H. Kalf, Weyl’s work on singular Sturm-Liouville operators in Groups and Analysis. The Legacy of Hermann Weyl, Cambridge University Press, Cambridge, 2008, pp. 63–83.

    Chapter  Google Scholar 

  15. B. Fritzsche, B. Kirstein, I. Ya. Roitberg, and A. L. Sakhnovich, Weyl matrix-functions and inverse problems for discrete Dirac type self-adjoint system: explicit and general solutions, Oper. Matrices 2 (2008), 201–231.

    MathSciNet  MATH  Google Scholar 

  16. B. Fritzsche, B. Kirstein and A. L. Sakhnovich, Semiseparable integral operators and explicit solution of an inverse problem for the skew-self-adjoint Dirac-type system, Integral Equations Operator Theory 66 (2010), 231–251.

    Article  MathSciNet  MATH  Google Scholar 

  17. F. Gesztesy, A complete spectral characterization of the double commutation method, J. Funct. Anal. 117 (1993), 401–446.

    Article  MathSciNet  MATH  Google Scholar 

  18. F. Gesztesy, P. Deift, C. Galvez, P. Perry, and W. Schlag (eds), Spectral Theory and Mathematical Physics, Part 2, Amer. Math. Soc, Providence, RI, 2007.

    Google Scholar 

  19. F. Gesztesy and B. Simon, A new approach to inverse spectral theory, II, General real potentials and the connection to the spectral measure, Ann. of Math. (2) 152 (2000), 593–643.

    Article  MathSciNet  MATH  Google Scholar 

  20. F. Gesztesy and G. Teschl, On the double commutation method, Proc. Amer. Math. Soc. 124 (1996), 1831–1840.

    Article  MathSciNet  MATH  Google Scholar 

  21. F. Gesztesy and M. Zinchenko, On spectral theory for Schrödinger operators with strongly singular potentials, Math. Nachr. 279 (2006), 1041–1082.

    Article  MathSciNet  MATH  Google Scholar 

  22. I. Gohberg, S. Goldberg, and M. A. Kaashoek, Classes of Linear Operators, Vol. I, Birkhäuser, Basel, 1990.

    MATH  Google Scholar 

  23. I. Gohberg, M. A. Kaashoek, and A. L. Sakhnovich, Canonical systems with rational spectral densities: explicit formulas and applications, Math. Nachr. 194 (1998), 93–125.

    Article  MathSciNet  MATH  Google Scholar 

  24. I. Gohberg, M. A. Kaashoek, and A. L. Sakhnovich, Scattering problems for a canonical system with a pseudo-exponential potential, Asymptot. Anal. 29 (2002), 1–38.

    MathSciNet  MATH  Google Scholar 

  25. I. Gohberg and M. G. Krein, Theory and Applications of Volterra Operators in Hilbert Space, Nauka, Moscow, 1967. Translated in: Transl. Math. Monographs 24, Providence, Rhode Island, 1970.

    Google Scholar 

  26. C. H. Gu, H. Hu, and Z. Zhou, Darboux Transformations in Integrable Systems. Theory and Their Applications to Geometry, Springer, Dordrecht, 2005.

    MATH  Google Scholar 

  27. M. Kaltenbäck, Hermitian indefinite functions and Pontryagin spaces of entire functions, Integral Equations Operator Theory 35 (1999), 172–197.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Kostenko, A. Sakhnovich, and G. Teschl, Weyl-Titchmarsh theory for Schrödinger operators with strongly singular potentials, Int. Math. Res. Not. IMRN (2011) art. rnr065.

  29. A. Kostenko, A. Sakhnovich and G. Teschl, Commutation methods for Schrödinger operators with strongly singular potentials, Math. Nachr. 285 (2012), 392–410.

    Article  Google Scholar 

  30. M. G. Krein, Continuous analogues of propositions on polynomials orthogonal on the unit circle (Russian), Dokl. Akad. Nauk SSSR 105 (1955), 637–640.

    MathSciNet  Google Scholar 

  31. M. G. Krein and H. Langer, Über einige Fortsetzungsprobleme, die eng mit der Theorie Hermitescher Operatoren im Raume Πκ zusammenhängen, I, Einige Funktionenklassen und ihre Darstellungen, Math. Nachr. 77 (1977), 187–236.

    Article  MathSciNet  MATH  Google Scholar 

  32. H. Langer and H. Winkler, Direct and inverse spectral problems for generalized strings, Integral Equations Operator Theory 30 (1998), 409–431.

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Langer and H. Woracek, A local inverse spectral theorem for Hamiltonian systems, Inverse Problems 27 (2011), 055002.

    Article  MathSciNet  Google Scholar 

  34. B. M. Levitan and I. S. Sargsjan, Sturm-Liouville and Dirac Operators, Kluwer, Dordrecht, 1991.

    Google Scholar 

  35. V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin, 1991.

    MATH  Google Scholar 

  36. R. Mennicken, A. L. Sakhnovich, and C. Tretter, Direct and inverse spectral problem for a system of differential equations depending rationally on the spectral parameter, Duke Math. J. 109 (2001), 413–449.

    Article  MathSciNet  MATH  Google Scholar 

  37. R. E. A. C. Paley and N. Wiener, Fourier Transforms in the Complex Domain, Amer. Math. Soc., Providence, RI, 1987.

    Google Scholar 

  38. J. Rovnyak and L. A. Sakhnovich, Spectral problems for some indefinite cases of canonical differential equations, J. Operator Theory 51 (2004), 115–139.

    MathSciNet  MATH  Google Scholar 

  39. A. Rybkin and V. K. Tuan, A new interpolation formula for the Titchmarsh-Weyl function, Proc. Amer. Math. Soc. 137 (2009), 4177–4185.

    Article  MathSciNet  MATH  Google Scholar 

  40. A. L. Sakhnovich, Asymptotics of spectral functions of an S-node, Soviet Math. (Iz. VUZ) 32 (1988), 92–105.

    MathSciNet  MATH  Google Scholar 

  41. A. L. Sakhnovich, Nonlinear Schrödinger equation on a semi-axis and an inverse problem associated with it, Ukrainian Math. J. 42 (1990), 316–323.

    Article  MathSciNet  MATH  Google Scholar 

  42. A. L. Sakhnovich, Iterated Bäcklund-Darboux transform for canonical systems, J. Funct. Anal. 144 (1997), 359–370.

    Article  MathSciNet  MATH  Google Scholar 

  43. A. L. Sakhnovich, Generalized Bäcklund-Darboux transformation: spectral properties and nonlinear equations, J. Math. Anal. Appl. 262 (2001), 274–306.

    Article  MathSciNet  MATH  Google Scholar 

  44. A. L. Sakhnovich, Dirac type and canonical systems: spectral and Weyl-Titchmarsh matrix functions, direct and inverse problems, Inverse Problems 18 (2002), 331–348.

    Article  MathSciNet  MATH  Google Scholar 

  45. A. L. Sakhnovich, Weyl functions, the inverse problem and special solutions for the system auxiliary to the nonlinear optics equation, Inverse Problems 24 (2008), 025026.

    Article  MathSciNet  Google Scholar 

  46. A. L. Sakhnovich, Construction of the solution of the inverse spectral problem for a system depending rationally on the spectral parameter, Borg-Marchenko-type theorem, and sine-Gordon equation, Integral Equations Operator Theory 69 (2011), 567–600.

    Article  MathSciNet  MATH  Google Scholar 

  47. A. L. Sakhnovich, A. A. Karelin, J. Seck-Tuoh-Mora, G. Perez-Lechuga, and M. Gonzalez-Hernandez, On explicit inversion of a subclass of operators with D-difference kernels and Weyl theory of the corresponding canonical systems, Positivity 14 (2010), 547–564.

    Article  MathSciNet  MATH  Google Scholar 

  48. L. A. Sakhnovich, Spectral analysis of Volterra’s operators defined in the space of vectorfunctions L 2m (0, l), Ukr. Mat. J. 16 (1964), 259–268.

    MATH  Google Scholar 

  49. L. A. Sakhnovich, Factorisation problems and operator identities, Russian Math. Surveys 41 (1986), 1–64.

    Article  MathSciNet  MATH  Google Scholar 

  50. L. A. Sakhnovich, Integral Equations with Difference Kernels on Finite Intervals, Birkhäuser Verlag, Basel, 1996.

    Book  MATH  Google Scholar 

  51. L. A. Sakhnovich, Interpolation Theory and its Applications, Kluwer Academic Publishers, Dordrecht, 1997.

    Book  MATH  Google Scholar 

  52. L. A. Sakhnovich, On a class of canonical systems on half-axis, Integral Equations Operator Theory 31 (1998), 92–112.

    Article  MathSciNet  MATH  Google Scholar 

  53. L. A. Sakhnovich, Spectral Theory of Canonical Differential Systems, Method of Operator Identities, Birkhäuser Verlag, 1999.

  54. B. Simon, A new approach to inverse spectral theory, I, Fundamental formalism, Ann. of Math. (2) 150 (1999), 1029–1057.

    Article  MathSciNet  MATH  Google Scholar 

  55. G. Teschl, Mathematical Methods in Quantum Mechanics With Applications to Schrödinger Operators, Amer. Math. Soc., Providence, RI, 2009.

    MATH  Google Scholar 

  56. V. E. Zakharov and A. V. Mikhailov, On the integrability of classical spinor models in two-dimensional space-time, Comm. Math. Phys. 74 (1980), 21–40.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Fritzsche.

Additional information

A. L. Sakhnovich was supported by the Austrian Science Fund (FWF) under Grant no. Y330.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fritzsche, B., Kirstein, B. & Sakhnovich, A.L. Weyl functions of generalized dirac systems: Integral representation, the inverse problem and discrete interpolation. JAMA 116, 17–51 (2012). https://doi.org/10.1007/s11854-012-0002-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-012-0002-x

Keywords

Navigation