Skip to main content
Log in

Invariant measures for non-primitive tiling substitutions

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We consider self-affine tiling substitutions in Euclidean space and the corresponding tiling dynamical systems. It is well known that in the primitive case, the dynamical system is uniquely ergodic. We investigate invariant measures when the substitution is not primitive and the tiling dynamical system is non-minimal. We prove that all ergodic invariant probability measures are supported on minimal components, but there are other natural ergodic invariant measures, which are infinite. Under some mild assumptions, we completely characterize σ-finite invariant measures which are positive and finite on a cylinder set. A key step is to establish recognizability of non-periodic tilings in our setting. Examples include the “integer Sierpiński gasket and carpet” tilings. For such tilings, the only invariant probability measure is supported on trivial periodic tilings, but there is a fully supported σ-finite invariant measure that is locally finite and unique up to scaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Bedford, Crinkly curves, Markov partitions and box dimension of self-similar sets, Ph.D. Thesis, University of Warwick, 1984.

  2. J. Bellissard, R. Benedetti, and J. M. Gambaudo, Spaces of tilings, finite telescopic approximations and gap-labeling, Comm. Math. Phys. 261 (2006), 1–41.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Benedetti and J. M. Gambaudo, On the dynamics of G-solenoids. Applications to Delone sets, Ergodic Theory Dynam. Systems 23 (2003), 673–691.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Bezuglyi, J. Kwiatkowski, and K. Medynets, Aperiodic substitution systems and their Bratteli diagrams, Ergodic Theory Dynam. Systems 29 (2009), 37–72.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Bezuglyi, J. Kwiatkowski, K. Medynets, and B. Solomyak, Invariant measures on stationary Bratteli diagrams, Ergodic Theory Dynam. Systems 30 (2010), 973–1007.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Burger, Horocycle flow on geometrically finite surfaces, Duke Math. J. 61 (1990), 779–803.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Chatard, Sur une généralisation du théorème de Birkhoff, C. R. Acad. Sc. Paris Sér A-B, 275 (1972), A1135–A1138.

    MathSciNet  Google Scholar 

  8. T. Downarowicz and A. Maass, Finite-rank Bratteli-Vershik diagrams are expansive, Ergodic Theory Dynam. Systems 28 (2008), 739–747.

    MathSciNet  MATH  Google Scholar 

  9. F. Durand, B. Host, and C. Skau, Substitutional dynamical systems, Bratteli diagrams and dimension groups, Ergodic Theory Dynam. Systems 19 (1999), 953–993.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Fisher, Integer Cantor sets and an order-two ergodic theorem, Ergodic Theory Dynam. Systems 13 (1992), 45–64.

    Google Scholar 

  11. F. R. Gantmacher, The Theory of Matrices, Chelsea, New York 1959.

  12. W. H. Gottschalk, Orbit-closure decompositions and almost periodic properties. Bull. Amer. Math. Soc. 50 (1944), 915–919.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Hama and H. Yuasa, Invariant measures for subshifts arising from substitutions of some primitive components, arXiv 1003.3364v1.

  14. C. Holton, C. Radin, and L. Sadun, Conjugacies for tiling dynamical systems, Comm. Math. Phys. 254 (2005), 343–359.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. A. Horn and C. B. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.

    MATH  Google Scholar 

  16. D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.

    Book  MATH  Google Scholar 

  17. C. McMullen, The Hausdorff dimension of general Sierpínski carpets, Nagoya Math. J. 96 (1984), 1–9.

    MathSciNet  MATH  Google Scholar 

  18. B. Praggastis, Numeration systems and Markov partitions from self similar tilings, Trans. Amer. Math. Soc. 351 (1999), 3315–3349.

    Article  MathSciNet  MATH  Google Scholar 

  19. N. P. Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Springer-Verlag, Berlin, 2002.

    Book  MATH  Google Scholar 

  20. M. Queffélec, Substitution Dynamical Systems — Spectral Analysis, Springer-Verlag, Berlin, 1987.

    MATH  Google Scholar 

  21. E. A. Robinson, Jr., Symbolic dynamics and tilings ofd, Symbolic Dynamics and its Applications, Amer. Math. Soc., Providence, RI, 2004, pp. 81–119.

    Google Scholar 

  22. D. J. Rudolph, Markov tilings ofn and representations ofn actions, Measure and Measurable Dynamics (Rochester, NY, 1987), Contemp. Math. 94, Amer. Math. Soc., Providence, RI, 1989, pp. 271–290.

    Google Scholar 

  23. H. Schneider, The influence of the marked reduced graph of a nonnegative matrix on the Jordan form and on related properties: a survey. Linear Algebra Appl. 84 (1986), 161–189.

    Article  MathSciNet  MATH  Google Scholar 

  24. B. Solomyak, Dynamics of self-similar tilings, Ergodic Theory Dynam. Systems 17 (1997), 695–738.

    Article  MathSciNet  MATH  Google Scholar 

  25. B. Solomyak, Nonperiodicity implies unique composition for self-similar translationally finite tilings, Discrete Comput. Geom. 20 (1998), 265–279.

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Strichartz. Fractals in the large, Canad. J. Math. 50 (1998), 638–657.

    Article  MathSciNet  MATH  Google Scholar 

  27. B. S. Tam and H. Schneider. On the core of a cone-preserving map. Trans. Amer. Math. Soc. 343 (1994), 479–524.

    Article  MathSciNet  MATH  Google Scholar 

  28. B. S. Tam and H. Schneider, On the invariant faces associated with a cone-preserving map, Trans. Amer. Math. Soc. 353 (2001), 209–245.

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Tempelman. Ergodic theorems for general dynamical systems, Soviet Math. Dokl. 8 (1967), 1213–1216.

    Google Scholar 

  30. H. D. Victory, Jr., On nonnegative solutions of matrix equations. SIAM J. Algebraic Discrete Methods 6 (1985), 406–412.

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Vince, Self-replicating tiles and their boundary. Discrete Comput. Geom. 21 (1999), 463–476.

    Article  MathSciNet  MATH  Google Scholar 

  32. N. Wiener. The ergodic theorem, Duke Math. J. 5 (1939), 1–18.

    Article  MathSciNet  Google Scholar 

  33. H. Yuasa, Invariant measures for the subshifts arising from non-primitive substitutions, J. Anal. Math. 102 (2007), 143–180.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Cortez.

Additional information

Partially supported by Fondecyt 1100318

Partially supported by NSF grant DMS-0654408.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortez, M.I., Solomyak, B. Invariant measures for non-primitive tiling substitutions. JAMA 115, 293–342 (2011). https://doi.org/10.1007/s11854-011-0031-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-011-0031-x

Keywords

Navigation