Skip to main content
Log in

Uniform geometric estimates of sublevel sets

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

This paper reconsiders the uniform sublevel set estimates of Carbery, Christ, and Wright [7], Phong, Stein, and Sturm [23], and Carbery and Wright [8] from a geometric perspective. This perspective leads one to consider a natural collection of homogeneous, nonlinear differential operators, which generalize mixed derivatives in ℝ d . As a consequence, it is shown that, in comparison to these previous works, improved uniform estimates are possible in all but certain explicitly “flat” situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J-G. Bak, D. Oberlin, and A. Seeger, Restriction of Fourier transforms to curves, II. Some classes with vanishing torsion, J. Aust. Math. Soc. 85 (2008), 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Bennett and N. Bez, Some nonliear Brascamp-Lieb inequalities and applications to harmonic analyis, J. Funct. Anal. 259 (2010), 2520–2556.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Bennett, A. Carbery, M. Christ, and T. Tao, Finite bounds for Hölder-Brascamp-Lieb multilinear inequalities, Math. Res. Lett. 17 (2010), 647–666.

    MathSciNet  MATH  Google Scholar 

  4. J. Bennett, A. Carbery, M. Christ, and T. Tao, The Brascamp-Lieb multilinear inequalities; finiteness, structure and extremals, Geom. Funct. Anal. 17 (2008), 1343–1415.

    Article  MathSciNet  Google Scholar 

  5. H. J. Brascamp and E. H. Lieb, Best constants in Young’s inequality, its converse, and its generalization to more than three functions, Advances in Math. 20 (1976), 151–173.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Carbery, A uniform sublevel set estimate, Harmonic Analysis and Partial Differential Equations, Contemp. Math. 505, Amer. Math. Soc. Providence, RI, 2009, pp. 97–103.

    Google Scholar 

  7. A. Carbery, M. Christ, and J. Wright, Multidimensional van der Corput and sublevel set estimates, J. Amer. Math. Soc. 12 (1999), 981–1015.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Carbery and J. Wright, What is van der Corput’s lemma in higher dimensions?, Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000), Publ. Mat. 2002, Vol. Extra, 13–26.

  9. A. Carbery and S. Ziesler, Restriction and decay for flat hypersurfaces, Publ. Mat. 46 (2002). 405–434.

    MathSciNet  MATH  Google Scholar 

  10. M. Christ, Convolution, curvature, and combinatorics: a case study, Internat. Math. Res. Notices 1998, 1033–1048.

  11. A. M. Gabrielov, Projections of semianalytic sets, Funct. Anal. Appl. 2 (1968), 282–291.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Gabrielov and N. Vorobjov, Complexity of computations with Pfaffian and Noetherian functions, Normal Forms, Bifurcations and Finiteness Problems in Differential Equations, Kluwer Acad. Publ., Dordrecht, 2004, pp. 211–250.

    Chapter  Google Scholar 

  13. M. Greenblatt, Stability of sublevel set estimates and sharp L 2 regularity of Radon transforms in the plane, Math. Res. Lett. 12 (2005), 1–7.

    MathSciNet  MATH  Google Scholar 

  14. P. T. Gressman, On multilinear determinant functionals, Proc. Amer. Math. Soc. 139 (2011), 2473–2484.

    Article  MathSciNet  MATH  Google Scholar 

  15. I. A. Ikromov, M. Kempe, and D. Müller, Estimates for maximal functions associated with hypersurfaces in3 and related problems of harmonic analysis, Acta Math. 204 (2010), 151–271.

    Article  MathSciNet  MATH  Google Scholar 

  16. V. N. Karpushkin, A theorem concerning uniform estimates of oscillatory integrals when the phase is a function of two variables, J. Soviet Math. 35 (1986), 2809–2826.

    Article  MATH  Google Scholar 

  17. A. G. Khovanskiĭ, A class of systems of transcendental equations, Dokl. Akad. Nauk SSSR 255 (1980), 804–807.

    MathSciNet  Google Scholar 

  18. A. G. Khovanskiĭ, Fewnomials, American Mathematical Society, Providence, RI, 1991.

    MATH  Google Scholar 

  19. A. Magyar, On Fourier restriction and the Newton polygon, Proc. Amer. Math. Soc. 137 (2009), 615–625.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. M. Oberlin, An estimate for a restricted X-ray transform, Canad. Math. Bull. 43 (2000), 472–476.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. H. Phong, D. H. and E. M. Stein, The Newton polyhedron and oscillatory integral operators, Acta Math. 179 (1997), 105–152.

    Article  MathSciNet  MATH  Google Scholar 

  22. D. H. Phong, E. M. Stein, and J. A. Sturm, On the growth and stability of real-analytic functions, Amer. J. Math. 121 (1999), 519–554.

    Article  MathSciNet  MATH  Google Scholar 

  23. D. H. Phong, E. M. Stein, and J. Sturm, Multilinear level set operators, oscillatory integral operators, and Newton polyhedra, Math. Ann. 319 (2001), 573–596.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. H. Phong, and J. Sturm, Algebraic estimates, stability of local zeta functions, and uniform estimates for distribution functions, Ann. of Math. (2) 152 (2000), 277–329.

    Article  MathSciNet  MATH  Google Scholar 

  25. O. Robert and P. Sargos, A general bound for oscillatory integrals with a polynomial phase of degree k, Math. Res. Lett. 13 (2006), 531–537.

    MathSciNet  MATH  Google Scholar 

  26. A. Seeger, Radon transforms and finite type conditions, J. Amer. Math. Soc. 11 (1998), 869–897.

    Article  MathSciNet  MATH  Google Scholar 

  27. L. van den Dries, Tame Topology and o-Minimal Structures, Cambridge University Press, Cambridge, 1998.

    Book  MATH  Google Scholar 

  28. A. N. Varčenko, Newton polyhedra and estimates of oscillatory integrals, Funkcional Anal. i Priložen. 10 (1976), 13–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip T. Gressman.

Additional information

This research was partially supported by NSF grant DMS-0850791.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gressman, P.T. Uniform geometric estimates of sublevel sets. JAMA 115, 251–272 (2011). https://doi.org/10.1007/s11854-011-0029-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-011-0029-4

Keywords

Navigation