Skip to main content
Log in

Γ-Convergence of 2D Ginzburg-Landau functionals with vortex concentration along curves

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We study the variational convergence of a family of twodimensional Ginzburg-Landau functionals arising in the study of superfluidity or thin-film superconductivity as the Ginzburg-Landau parameter ε tends to 0. In this regime and for large enough applied rotations (for superfluids) or magnetic fields (for superconductors), the minimizers acquire quantized point singularities (vortices). We focus on situations in which an unbounded number of vortices accumulate along a prescribed Jordan curve or a simple arc in the domain. This is known to occur in a circular annulus under uniform rotation, or in a simply connected domain with an appropriately chosen rotational vector field. We prove that if suitably normalized, the energy functionals Γ-converge to a classical energy from potential theory. Applied to global minimizers, our results describe the limiting distribution of vortices along the curve in terms of Green equilibrium measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aftalion, S. Alama, and L. Bronsard, Giant vortex and the breakdown of strong pinning in a rotating Bose-Einstein condensate, Arch. Ration. Mech. Anal. 178 (2005), 247–286.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Alama and L. Bronsard, Vortices and pinning effects for the Ginzburg-Landau model in multiply connected domains, Comm. Pure Appl. Math. 59 (2006), 36–70.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Alama and L. Bronsard, Pinning effects and their breakdown for a Ginzburg-Landau model with normal inclusions, J. Math. Phys. 46 (2005), 095102.

    Article  MathSciNet  Google Scholar 

  4. S. Alama, L. Bronsard, and B. Galvão-Sousa, Thin film limits for Ginzburg-Landau with strong applied magnetic fields, SIAM J. Math. Anal. 42 (2010), 97–124.

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, New York, 2000.

    MATH  Google Scholar 

  6. H. Aydi, Lines of vortices for solutions of the Ginzburg-Landau equations, J. Math. Pure Appl. 89 (2008), 49–69.

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Bethuel, H. Brezis, and F. Hélein, Ginzburg-Landau Vortices, Birkhäuser Boston, Boston, MA, 1994.

    Book  MATH  Google Scholar 

  8. L. Bers, F. John, and M. Schechter, Partial Differential Equations. AMS, Providence, RI, 1979.

    MATH  Google Scholar 

  9. S. J. Chapman, Q. Du, and M. D. Gunzburger, On the Lawrence-Donaich and anisotropic Ginzburg-Landau models for layered superconductors, SIAM J. Appl. Math. 55 (1995), 156–174.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Dal Maso, An Introduction to Γ-convergence, Birkhaüser Boston, Boston, MA, 1993.

    Google Scholar 

  11. R. Ignat and V. Millot, The critical velocity for vortex existence in a two-dimensional rotating Bose-Einstein condensate, J. Funct. Anal. 233 (2006), 260–306.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Ignat and V. Millot, Energy expansion and vortex location for a two-dimensional rotating Bose-Einstein condensate, Rev. Math. Phys. 18 (2006), 119–162.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. L. Jerrard and H. M. Soner, The Jacobian and the Ginzburg-Landau energy, Calc. Var. Partial Differential Equations 14 (2002), 151–191.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Kachmar, Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint, ESAIM Control Optim. Calc. Var. 16 (2010), 545–580.

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Saff and V. Totik, Logarithmic Potentials with External Fields, Springer-Verlag, Berlin, 1997.

    MATH  Google Scholar 

  16. E. Sandier and S. Serfaty, A rigorous derivation of a free-boundary problem arising in superconductivity, Ann. Sci. École Norm. Sup. (4) 33 (2000), 561–592.

    MathSciNet  MATH  Google Scholar 

  17. E. Sandier and S. Serfaty, Vortices in the Magnetic Ginzburg-Landau Model, Birkhäuser Boston, Boston, MA, 2007.

    MATH  Google Scholar 

  18. E. Sandier and M. Soret, S 1 -valued harmonic maps with high topological degree: asymptotic behavior of the singular set, Potential Anal. 13 (2000), 169–184.

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Serfaty, On a model of rotating superfluids, ESAIM Control Optim. Calc. Var. 6 (2001), 201–238.

    Article  MathSciNet  MATH  Google Scholar 

  20. W. P. Ziemer, Weakly Differentiable Functions, Springer-Verlag, New-York, 1989.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Alama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alama, S., Bronsard, L. & Millot, V. Γ-Convergence of 2D Ginzburg-Landau functionals with vortex concentration along curves. JAMA 114, 341–391 (2011). https://doi.org/10.1007/s11854-011-0020-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-011-0020-0

Keywords

Navigation