Skip to main content
Log in

Isomorphism properties of Toeplitz operators and pseudo-differential operators between modulation spaces

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We investigate the lifting property of modulation spaces and construct explicit isomorphisms between them. For each weight function ω and suitable window function φ, the Toeplitz operator (or localization operator) Tp φ (ω) is an isomorphism from \(M_{({\omega _0})}^{p,q}\), onto \(M_{({\omega _0}/\omega )}^{p,q}\) for every p, q ∈ [1,∞] and arbitrary weight function ω 0. The methods involve the pseudo-differential calculus of Bony and Chemin and the Wiener algebra property of certain symbol classes of pseudo-differential Operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. R. Beals, Characterization of pseudo-differential operators and applications, Duke Math. J. 44 (1977), 45–57.

    Article  MathSciNet  MATH  Google Scholar 

  2. F. A. Berezin, Wick and anti-Wick symbols of operators, Mat. Sb. (N.S.) 86(128) (1971), 578–610.

    MathSciNet  Google Scholar 

  3. P. Boggiatto, E. Buzano, and L. Rodino, Global Hypoellipticity and Spectral Theory, Math Research, 92, Akademie Verlag, 1996.

  4. P. Boggiatto, E. Cordero, and K. Gröchenig, Generalized anti-Wick operators with symbols in distributional Sobolev spaces, Integral Equations Operator Theory 48 (2004), 427–442.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Boggiatto and J. Toft, Embeddings and compactness for generalized Sobolev-Shubin spaces and modulation spaces, Appl. Anal. 84 (2005), 269–282.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. M. Bony and J. Y. Chemin, Espaces fonctionnels associés au calcul de Weyl-Hörmander, Bull. Soc. Math. France 122 (1994), 77–118.

    MathSciNet  MATH  Google Scholar 

  7. J.M. Bony and N. Lerner, Quantification asymptotique et microlocalisations d'ordre supérieur I, Ann. Sci. École Norm. Sup. (4) 22 (1989), 377–433.

    MathSciNet  MATH  Google Scholar 

  8. E. Cordero and K. Gröchenig, Time-frequency analysis of localization operators, J. Funct. Anal. 205 (2003), 107–131.

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Cordero and K. Gröchenig, Symbolic calculus and Fredholm property for localization operators, J. Fourier Anal. Appl. 12 (2006), 345–370.

    Article  MathSciNet  Google Scholar 

  10. I. Daubechies, Time-frequency localization operators: a geometric phase space approach, IEEE Trans. Inform. Theory 34 (1988), 605–612.

    Article  MathSciNet  MATH  Google Scholar 

  11. H. G. Feichtinger, Banach convolution algebras of Wiener's type, in Functions, Series, Operators, North-Holland, Amsterdam, 1980, pp. 509–524.

    Google Scholar 

  12. H. G. Feichtinger, Modulation spaces on locally compact abelian groups, in Proceedings of “International Conference on Wavelets and Applications” 2002, Chennai, India, 2003, pp. 99–140. Updated version of a technical report, University of Vienna, 1983.

  13. H. G. Feichtinger, Atomic characterizations of modulation spaces through Gabor-type representations, Rocky Mountain J. Math. 19 (1989), 113–126.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. G. Feichtinger, Wiener amalgams over Euclidean spaces and some of their applications, in Function Spaces (Edwardsville, IL, 1990), 136, Marcel Dekker, New York, 1992, pp. 123–137.

    Google Scholar 

  15. H. G. Feichtinger, Modulation spaces: looking back and ahead, Sampl. Theory Signal Image Process. 5 (2006), 109–140.

    MathSciNet  MATH  Google Scholar 

  16. H. G. Feichtinger and K. H. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions, I, J. Funct. Anal. 86 (1989), 307–340.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. G. Feichtinger and K. H. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions, II, Monatsh. Math. 108 (1989), 129–148.

    Article  MathSciNet  MATH  Google Scholar 

  18. G. B. Folland, Harmonic Analysis in Phase Space, Princeton Univ. Press, Princeton, 1989.

    MATH  Google Scholar 

  19. K. H. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001.

    MATH  Google Scholar 

  20. K. H. Gröchenig, Composition and spectral invariance of pseudodifferential operators on modulation spaces, J. Anal. Math. 98 (2006), 65–82.

    Article  MathSciNet  MATH  Google Scholar 

  21. K. H. Gröchenig, Time-frequency analysis of Sjöstrand's class, Rev. Mat. Iberoam. 22 (2006), 703–724.

    MathSciNet  MATH  Google Scholar 

  22. K. Gröchenig and Z. Rzeszotnik, Banach algebras of pseudodifferential operators and their almost diagonalization, Ann. Inst. Fourier (Grenoble) 58 (2008), 2279–2314.

    Article  MathSciNet  MATH  Google Scholar 

  23. K. Gröchenig and T. Strohmer, Pseudodifferential operators on locally compact abelian groups and Sjöstrand's symbol class, J. Reine Angew. Math. 613 (2007), 121–146.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Holst, J. Toft, and P. Wahlberg, Weyl product algebras and modulation spaces, J. Funct. Anal. 251 (2007), 463–491.

    Article  MathSciNet  MATH  Google Scholar 

  25. L. Hörmander, The Weyl calculus of pseudo-differential operators, Comm. Pure Appl. Math. 32 (1979), 359–443.

    Article  MATH  Google Scholar 

  26. L. Hörmander, The Analysis of Linear Partial Differential Operators, Vols. I, III, Springer-Verlag, Berlin, 1983, 1985.

    Google Scholar 

  27. A. J. E. M. Janssen, Positivity properties of phase-plane distribution functions, J. Math. Phys. 25 (1984), 2240–2252.

    Article  MathSciNet  Google Scholar 

  28. N. Lerner, The Wick calculus of pseudo-differential operators and some of its applications, Cubo 5 (2003), 213–236.

    MathSciNet  MATH  Google Scholar 

  29. M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer-Verlag, Berlin, 1987.

    MATH  Google Scholar 

  30. J. Sjöstrand, An algebra of pseudodifferential operators, Math. Res. Lett. 1 (1994), 185–192.

    MathSciNet  MATH  Google Scholar 

  31. J. Sjöstrand, Wiener type algebras of pseudodifferential operators, Séminaire sur les Equations aux Dérivées Partielles, É cole Polytechnique, 1994–1995, Exposé no IV, École Polytech., Paliseau, 1995.

    Google Scholar 

  32. J. Sjöstrand, Pseudodifferential operators and weighted normed symbol spaces, Serdica Math. J. 34 (2008), 1–38.

    MathSciNet  MATH  Google Scholar 

  33. K. Tachizawa, The boundedness of pseudo-differential operators on modulation spaces, Math. Nachr. 168 (1994), 263–277.

    Article  MathSciNet  MATH  Google Scholar 

  34. N. Teofanov, Modulation spaces, Gelfand-Shilov spaces and pseudodifferential operators, Sampl. Theory Signal Image Process. 5 (2006), 225–242.

    MathSciNet  MATH  Google Scholar 

  35. J. Toft, Continuity properties for non-commutative convolution algebras with applications in pseudo-differential calculus, Bull. Sci. Math. 126 (2002), 115–142.

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Toft, Continuity properties for modulation spaces with applications to pseudo-differential calculus, II, Ann. Global Anal. Geom. 26 (2004), 73–106.

    Article  MathSciNet  MATH  Google Scholar 

  37. J. Toft, Convolution and embeddings for weighted modulation spaces in Advances in Pseudo-Differential Operators, Birkhäuser Verlag, Basel, 2004, pp. 165–186.

    Chapter  Google Scholar 

  38. J. Toft, Continuity and Schatten properties for pseudo-differential operators on modulation spaces in Modern Trends in Pseudo-Differential Operators, Birkhäuser Verlag, Basel, 2007, pp. 173–206.

    Chapter  Google Scholar 

  39. J. Toft, Continuity and Schatten properties for Toeplitz operators on modulation spaces in Modern Trends in Pseudo-Differential Operators, Birkhäuser Verlag, Basel, 2007, pp. 313–328.

    Chapter  Google Scholar 

  40. J. Toft, Pseudo-differential operators with smooth symbols on modulation spaces, Cubo 11 (2009), 87–107.

    MathSciNet  MATH  Google Scholar 

  41. J. Toft, Multiplication properties in pseudo-differential calculus with small regularity on the symbols, J. Pseudo-Differ. Oper. Appl. 1 (2010), 101–138.

    Article  MathSciNet  MATH  Google Scholar 

  42. J. Toft and P. Boggiatto, Schatten classes for Toeplitz operators with Hilbert space windows on modulation spaces, Adv. Math. 217 (2008), 305–333.

    Article  MathSciNet  MATH  Google Scholar 

  43. H. Triebel, Theory of Function Spaces, Birkhäuser Verlag, Basel, 1983.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karlheinz Gröchenig.

Additional information

K.G. was supported by the Marie-Curie Excellence Grant. MEXT-CT-2004-517154

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gröchenig, K., Toft, J. Isomorphism properties of Toeplitz operators and pseudo-differential operators between modulation spaces. JAMA 114, 255–283 (2011). https://doi.org/10.1007/s11854-011-0017-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-011-0017-8

Keywords

Navigation