Skip to main content
Log in

Weighted Fourier inequalities: Boas’ conjecture in ℝn

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

Weighted L p(ℝn) → L q(ℝn) Fourier inequalities are studied. We prove Pitt-Boas type results on integrability with power weights of the Fourier transform of a radial function. Extensions to general weights are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Askey and S. Wainger, Integrability theorems for Fourier series, Duke Math. J. 33 (1966), 223–228.

    Article  MathSciNet  MATH  Google Scholar 

  2. W. Beckner, Pitt's inequality and the uncertainty principle, Proc. Amer. Math. Soc. 123 (1995), 1897–1905.

    MathSciNet  MATH  Google Scholar 

  3. W. Beckner, Pitt's inequality with sharp convolution estimates, Proc. Amer. Math. Soc. 136 (2008), 1871–1885.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. J. Benedetto and H. P. Heinig, Fourier transform inequalities with measure weights, Adv.Math. 96 (1992), 194–225.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. J. Benedetto and H. P. Heinig, Weighted Fourier inequalities: new proofs and generalizations, J. Fourier Anal. Appl. 9 (2003), 1–37.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. J. Benedetto and J. D. Lakey, The definition of the Fourier transform for weighted inequalities, J. Funct. Anal. 120 (1994), 403–439.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. P. Boas, The integrability class of the sine transform of a monotonic function, Studia Math. 44 (1972), 365–369.

    MathSciNet  Google Scholar 

  8. J. S. Bradley, Hardy inequalities with mixed norms, Canad. Math. Bull. 21 (1978), 405–408.

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Carton-Lebrun and H. P. Heinig, Weighted Fourier transform inequalities for radially decreasing functions, SIAM J. Math. Anal. 23 (1992), 785–798.

    Article  MathSciNet  MATH  Google Scholar 

  10. L. De Carli, On the L p-L q norm of the Hankel transform and related operators, J. Math. Anal. Appl. 348 (2008), 366–382.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, Vol. II, McGraw-Hill, New York, 1953.

    MATH  Google Scholar 

  12. R. A. Hunt, On L(p,q) spaces, Enseignement Math. 12 (1966), 249–276.

    MathSciNet  MATH  Google Scholar 

  13. W. B. Jurkat and G. Sampson, On rearrangement and weight inequalities for the Fourier transform, Indiana Univ. Math. J. 33 (1984), 257–270.

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Liflyand and S. Tikhonov, Extended solution of Boas’ conjecture on Fourier transforms, C. R. Math. Acad. Sci. Paris 346 (2008), 1137–1142.

    MathSciNet  MATH  Google Scholar 

  15. E. Liflyand and S. Tikhonov, The Fourier transforms of general monotone functions, Analysis and Mathematical Physics, Birkhäuser, Basel, 2009, pp. 377–396.

    Chapter  Google Scholar 

  16. E. Liflyand and S. Tikhonov, A concept of general monotonicity and applications, Math. Nachr, to appear.

  17. H. R. Pitt, Theorems on Fourier series and power series, Duke Math. J. 3 (1937), 747–755.

    Article  MathSciNet  Google Scholar 

  18. P. G. Rooney, Generalized Hp spaces and Laplace transforms, Abstract Spaces and Approximation, Birkhäuser, Basel, 1969, pp. 258–269.

    Google Scholar 

  19. C. Sadosky, R. and L. Wheeden, Some weighted norm inequalities for the Fourier transform of functions with vanishing moments, Trans. Amer. Math. Soc. 300 (1987), 521–533.

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. Sagher, Integrability conditions for the Fourier transform, J. Math. Anal. Appl. 54 (1976), 151–156.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.

    MATH  Google Scholar 

  22. E. M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482–492.

    Article  MathSciNet  MATH  Google Scholar 

  23. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, NJ, 1971.

    MATH  Google Scholar 

  24. J. O. Strömberg and R. L. Wheeden, Weighted norm estimates for the Fourier transform with a pair of weights, Trans. Amer. Math. Soc. 318 (1990), 355–372.

    Article  MathSciNet  MATH  Google Scholar 

  25. E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Clarendon Press, Oxford, 1937.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Gorbachev.

Additional information

This research was supported by the Centre de Recerca Matemàtica in Barcelona, the Mathematisches Forschungsinstitut Oberwolfach, and by the RFFI 09-01-00175, RFFI 10-01-00564, NSH-3252.2010.1,MTM 2008-05561-C02-02, and 2009 SGR 1303.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorbachev, D., Liflyand, E. & Tikhonov, S. Weighted Fourier inequalities: Boas’ conjecture in ℝn . JAMA 114, 99–120 (2011). https://doi.org/10.1007/s11854-011-0013-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-011-0013-z

Keywords

Navigation