Skip to main content
Log in

Concentration phenomena in nonlinear eigenvalue problems with variable exponents and sign-changing potential

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

In this paper we establish the concentration of the spectrum in an unbounded interval for a class of eigenvalue problems involving variable growth conditions and a sign-changing potential. We also study the optimization problem for the particular eigenvalue given by the infimum of the associated Rayleigh quotient when the variable potential lies in a bounded, closed and convex subset of a certain variable exponent Lebesgue space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Acerbi and G. Mingione, Gradient estimates for the p(x)-Laplacean system, J. Reine Angew. Math. 584 (2005), 117–148.

    MathSciNet  MATH  Google Scholar 

  2. M. S. Ashbaugh and E. M. Harrell, Maximal and minimal eigenvalues and their associated nonlinear equations, J. Math. Phys. 28 (1987), 1770–1786.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. F. Bonder and L. M. Del Pezzo, An optimization problem for the first eigenvalue of the p-Laplacian plus a potential, Commun. Pure Appl. Anal. 5 (2006), 675–690.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Brezis, Analyse Fonctionnelle: Théorie, Méthodes et Applications, Masson, Paris, 1992.

    Google Scholar 

  5. Y. Chen, S. Levine, and M. Rao, Variable exponent, linear growth functionals inimage processing, SIAM J. Appl. Math. 66 (2006), 1383–1406.

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Diening, Theoretical and Numerical Results for Electrorheological Fluids, Ph.D. thesis, University of Frieburg, Germany, 2002.

    MATH  Google Scholar 

  7. L. Diening, P. Hästö and A. Nekvinda, Open problems in variable exponent Lebesgue and Sobolev spaces, in FSDONA04 Proceedings (P. Drábek and J. Rákosník, eds.), Milovy, Czech Republic, 2004, pp. 38–58.

    Google Scholar 

  8. D. E. Edmunds, J. Lang, and A. Nekvinda, On L p(x) norms, Proc. Roy. Soc. London, Ser. A, 455 (1999), 219–225.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. E. Edmunds and J. Rákosník, Density of smooth functions in W k,p(x)(Ω), Proc. Roy. Soc. London, Ser. A, 437 (1992), 229–236.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. E. Edmunds and J. Rákosník, Sobolev embedding with variable exponent, Studia Math. 143 (2000), 267–293.

    MathSciNet  MATH  Google Scholar 

  11. H. Egnell, Extremal properties of the first eigenvalue of a class of elliptic eigenvalue problems, Ann. Sci. Norm. Sup. Pisa 14 (1987), 1–48.

    MathSciNet  MATH  Google Scholar 

  12. S. Esedoglu and S. Osher, Decomposition of images by the anisotropic Rudin-Osher-Fatemi model, Comm. Pure Appl. Math. 57 (2004), 1609–1626.

    Article  MathSciNet  MATH  Google Scholar 

  13. X. Fan, Remarks on eigenvalue problems involving the p(x)-Laplacian, J. Math. Anal. Appl., in press.

  14. X. Fan, Q. Zhang and D. Zhao, Eigenvalues of p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl. 302 (2005), 306–317.

    Article  MathSciNet  MATH  Google Scholar 

  15. T. C. Halsey, Electrorheological fluids, Science 258 (1992), 761–766.

    Article  Google Scholar 

  16. P. Harjulehto, P. Hästö, M. Koskenoja and S. Varonen, Sobolev capacity on the space W 1,p(·) (R n), J. Funct. Spaces Appl. 1 (2003), 17–33.

    MathSciNet  MATH  Google Scholar 

  17. O. Kováčik and J. Rákosník, On spaces L p(x) and W 1,p(x), Czechoslovak Math. J. 41 (1991), 592–618.

    MathSciNet  Google Scholar 

  18. A. Kristály, M. Mihăilescu and V. Rădulescu, Two nontrivial solutions for a non-homogeneous Neumann problem: an Orlicz-Sobolev setting, Proc. Roy. Soc. Edinburgh: Sect. A (Mathematics) 139A (2009), 367–379.

    Article  Google Scholar 

  19. M. Mihăilescu, P. Pucci and V. Rădulescu, Nonhomogeneous boundary value problems in anisotropic Sobolev spaces, C. R. Acad. Sci. Paris, Ser. I 345 (2007), 561–566.

    MATH  Google Scholar 

  20. M. Mihăilescu, P. Pucci and V. Rădulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl. 340 (2008), 687–698.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Mihăilescu and V. Rădulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. Roy. Soc. London, Ser. A 462 (2006), 2625–2641.

    Article  MATH  Google Scholar 

  22. M. Mihăilescu and V. Rădulescu, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc. 135 (2007), 2929–2937.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Mihăilescu and V. Rădulescu, Continuous spectrum for a class of nonhomogeneous differential operators, Manuscripta Math. 125 (2008), 157–167.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Mihăilescu and V. Rădulescu, Neumann problems associated to nonhomogeneous differential operators in Orlicz-Sobolev spaces, Ann. Inst. Fourier 58 (2008), 2087–2111.

    MATH  Google Scholar 

  25. M. Mihăilescu and V. Rădulescu, Spectrum consisting in an unbounded interval for a class of nonhomogeneous differential operators, Bull. London Math. Soc. 40 (2008), 972–984.

    Article  MATH  Google Scholar 

  26. M. Mihăilescu and V. Rădulescu, A continuous spectrum for nonhomogeneous differential operators in Orlicz-Sobolev spaces, Math. Scand. 104 (2009), 132–146.

    MathSciNet  MATH  Google Scholar 

  27. J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, 1034, Springer-Verlag, Berlin, 1983.

    MATH  Google Scholar 

  28. M. Ružička, Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2002.

    Google Scholar 

  29. S. Samko and B. Vakulov, Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators, J. Math. Anal. Appl. 310 (2005), 229–246.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, Heidelberg, 1996.

    MATH  Google Scholar 

  31. V. Zhikov, Averaging of functionals in the calculus of variations and elasticity, Math. USSR Izv. 29 (1987), 33–66.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Mihăilescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mihăilescu, M., Rădulescu, V. Concentration phenomena in nonlinear eigenvalue problems with variable exponents and sign-changing potential. JAMA 111, 267–287 (2010). https://doi.org/10.1007/s11854-010-0018-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-010-0018-z

Navigation