Skip to main content
Log in

Idempotent ultrafilters, multipleweak mixing and Szemerédi’s theorem for generalized polynomials

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

It is possible to formulate the polynomial Szemerédi theorem as follows: Let q i (x) ∈ Q[x] with q i (Z) ⊂ Z, 1 ≤ ik. If EN has positive upper density, then there are a, nN such that

$$ \{ a,a + q_1 (n) - q_1 (0),...,a + q_k (n) - q_k (0)\} \subset E. $$

Using methods of abstract ergodic theory, topological algebra in β N, and some recently obtained knowledge concerning the relationship between translations on nilmanifolds and the distribution of bounded generalized polynomials, we prove, among other results, the following extension, valid for generalized polynomials (functions obtained from regular polynomials via iterated use of the floor function). Let q i (x) be generalized polynomials, 1 ≤ ik, and let pβ N be an idempotent ultrafilter all of whose members have positive upper Banach density. Then there exist constants c i , 1 ≤ ik, such that if EZ has positive upper Banach density, then the set {nN: ∃ aZ with {a, a+q 1(n)−c 1, …, a+q k (n)−c k } ⊂ E} belongs to p. As part of the proof, we also obtain a new ultrafilter polynomial ergodic theorem characterizing weak mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Adams, Largeness of the set of finite sums of sequences in N, Ph.D. dissertation, Howard University, 2006.

  2. P. Balister, personal communication.

  3. M. Beiglböck, V. Bergelson, T. Downarowicz and A. Fish, D-sets and the central sets theorem, Topology and its Applications 156 (2009), 2565–2571.

    Article  MATH  MathSciNet  Google Scholar 

  4. V. Bergelson, Weakly mixing PET, Ergodic Theory Dynam. Systems, 7 (1987), 337–349.

    Article  MATH  MathSciNet  Google Scholar 

  5. V. Bergelson, Ergodic Ramsey theory-an update, in Ergodic Theory of Z d -actions (M. Pollicot and K. Schmidt, eds.), London Mathematical Society Lecture Note Series 228, 1996, pp. 1–61.

  6. V. Bergelson and T. Downarowicz, Large set of integers and hierarchy of mixing properties of measure preserving systems, Colloq. Math. 10 (2008), 117–150.

    Article  MathSciNet  Google Scholar 

  7. V. Bergelson, H. Furstenberg and R. McCutcheon, IP-sets and polynomial recurrence, Ergodic Theory Dynam. Systems 16 (1996), 963–974.

    Article  MATH  MathSciNet  Google Scholar 

  8. V. Bergelson and I. Håland, Sets of recurrence and generalized polynomials, in Convergence in Ergodic Theory and Probability (Columbus, OH, 1993), de Gruyter, Berlin, 1996, pp. 91–110.

    Google Scholar 

  9. V. Bergelson and N. Hindman, Nonmetrizable topological dynamics and Ramsey Theory, Trans. Amer. Math. Soc. 320 (1990), 293–320.

    Article  MATH  MathSciNet  Google Scholar 

  10. V. Bergelson, B. Host, R. McCutcheon and F. Parreau, Aspects of uniformity in recurrence, Dedicated to the memory of Anzelm Iwanik, Colloq. Math. 84/85 (2000), 549–576.

    MathSciNet  Google Scholar 

  11. V. Bergelson and I. J. Håland-Knutson, Higher order weak mixing along generalized polynomials, Manuscript.

  12. V. Bergelson, I. J. Håland-Knutson and R. McCutcheon, IP systems, generalized polynomials and recurrence, Ergodic Theory Dynam. Systems 26 (2006), 999–1019.

    Article  MATH  MathSciNet  Google Scholar 

  13. V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden’s and Szemerédi’s theorem, J. Amer. Math. Soc. 9 (1996), 725–753.

    Article  MATH  MathSciNet  Google Scholar 

  14. V. Bergelson and A. Leibman, Set-polynomials and polynomial extension of Hales-Jewett theorem, Ann. of Math. (2) 150 (1999), 33–75.

    Article  MATH  MathSciNet  Google Scholar 

  15. V. Bergelson and A. Leibman, Distribution of values of bounded generalized polynomials, Acta Math. 198 (2007), 155–230.

    Article  MATH  MathSciNet  Google Scholar 

  16. V. Bergelson and R. McCutcheon, Uniformity in the polynomial Szemerédi theorem, in Ergodic Theory of Z d -actions, (M. Pollicott and K. Schmidt, eds.), Cambridge University Press, 1996, pp. 273–296.

  17. V. Bergelson and R. McCutcheon, An ergodic IP polynomial Szemerédi theorem, Mem. Amer. Math. Soc. 146 (2000), 1–106.

    MathSciNet  Google Scholar 

  18. V. Bergelson and R. McCutcheon, Central sets and a non-commutative Roth theorem, Amer. J. Math. 129 (2007), 1251–1275.

    Article  MATH  MathSciNet  Google Scholar 

  19. R. Ellis, Lectures on Topological Dynamics, Benjamin, New York, 1969.

    MATH  Google Scholar 

  20. P. Erdős, On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc. 51 (1945), 898–902.

    Article  MathSciNet  Google Scholar 

  21. H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256.

    Article  MATH  MathSciNet  Google Scholar 

  22. H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, 1981.

  23. H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for commuting transformations, J. Analyse Math. 34 (1978), 275–291.

    Article  MATH  MathSciNet  Google Scholar 

  24. H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for IP-systems and combinatorial theory, J. Analyse Math. 45 (1985), 117–168.

    Article  MATH  MathSciNet  Google Scholar 

  25. H. Furstenberg, Y. Katznelson and D. Ornstein, The ergodic theoretical proof of Szemerédi’s theorem, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 527–552.

    Article  MATH  MathSciNet  Google Scholar 

  26. N. Hindman, Finite sums from sequences within cells of a partition of N, J. Combin. Theory, Ser. A 17 (1974), 1–11.

    Article  MATH  MathSciNet  Google Scholar 

  27. N. Hindman, A. Maleki and D. Strauss, Central sets and their combinatorial characterization, J. Combin. Theory, Ser. A 74 (1996), 188–208.

    Article  MATH  MathSciNet  Google Scholar 

  28. N. Hindman and D. Strauss, Algebra in the Stone-Čech Compactification: Theory and Applications, de Gruyter, Berlin, 1998.

    MATH  Google Scholar 

  29. D. J. Kleitman, On a lemma of Littlewood and Offord on the distribution of certain sums, Math. Z. 90 (1965), 251–259.

    Article  MATH  MathSciNet  Google Scholar 

  30. R. McCutcheon, An infinitary polynomial van der Waerden theorem, J. Combin. Theory, Ser. A 86 (1999), 214–231.

    Article  MATH  MathSciNet  Google Scholar 

  31. R. McCutcheon, FVIP systems and multiple recurrence, Israel J.Math. 146 (2005), 157–188.

    Article  MATH  MathSciNet  Google Scholar 

  32. R. McCutcheon and A. Quas, Generalized polynomials and mild mixing, Canad. J. Math. 61 (2009), 656–673.

    Article  MATH  MathSciNet  Google Scholar 

  33. K. Milliken, Ramsey’s Theorem with sums or unions, J. Combin. Theory, Ser. A 18 (1975), 276–290.

    Article  MATH  MathSciNet  Google Scholar 

  34. A. Sárközy, On difference sets of integers III, Acta Math. Acad. Sci. Hungar. 31 (1978), 125–149.

    Article  MATH  MathSciNet  Google Scholar 

  35. E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta. Arith. 27 (1975), 199–245.

    MATH  MathSciNet  Google Scholar 

  36. A. Taylor, A canonical partition relation for finite subsets of ω, J. Combin. Theory. Ser. A 21 (1976), 137–146.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly Bergelson.

Additional information

The first author gratefully acknowledges the support of the National Science Foundation via grants DMS-0600042 and DMS-0901106

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergelson, V., McCutcheon, R. Idempotent ultrafilters, multipleweak mixing and Szemerédi’s theorem for generalized polynomials. JAMA 111, 77–130 (2010). https://doi.org/10.1007/s11854-010-0013-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-010-0013-4

Navigation