Skip to main content
Log in

A criterion for Hill operators to be spectral operators of scalar type

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We derive necessary and sufficient conditions for a Hill operator (i.e., a one-dimensional periodic Schrö dinger operator) H = −d 2 /dx 2 + V to be a spectral operator of scalar type. The conditions show the remarkable fact that the property of a Hill operator being a spectral operator is independent of smoothness (or even analyticity) properties of the potential V. In the course of our analysis, we also establish a functional model for periodic Schrödinger operators that are spectral operators of scalar type and develop the corresponding eigenfunction expansion.

The problem of deciding which Hill operators are spectral operators of scalar type appears to have been open for about 40 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. W. G. Bade, Unbounded spectral operators, Pacific J. Math. 4 (1954), 373–392.

    MATH  MathSciNet  Google Scholar 

  2. V. Batchenko and F. Gesztesy, On the spectrum of Schrödinger operators with quasi-periodic algebro-geometric KdV potentials, J. Analyse Math. 95 (2005), 333–387.

    Article  MATH  MathSciNet  Google Scholar 

  3. B. Birnir, Complex Hill’s equation and the complex periodic Korteweg-de Vries equations, Comm. Pure Appl. Math. 39 (1986), 1–49.

    Article  MATH  MathSciNet  Google Scholar 

  4. B. Birnir, Singularities of the complex Korteweg-de Vries flows, Comm. Pure Appl. Math. 39 (1986), 283–305.

    Article  MATH  MathSciNet  Google Scholar 

  5. B. Birnir, An example of blow-up, for the complex KdV equation and existence beyond blow-up, SIAM J. Appl. Math. 47 (1987), 710–725.

    Article  MATH  MathSciNet  Google Scholar 

  6. T. Christiansen, Isophasal, isopolar, and isospectral Schrödinger operators and elementary complex analysis, Amer. J. Math. 130 (2008), 49–58.

    Article  MATH  MathSciNet  Google Scholar 

  7. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, Krieger, Malabar, 1985.

  8. I. Colojoară and C. Foiaş, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968.

    MATH  Google Scholar 

  9. N. Dernek and O. A. Veliev, On the Riesz basisness of the root functions of the nonself-adjoint Sturm-Liouville operator, Israel J. Math. 145 (2005), 113–123.

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Djakov and B. Mityagin, Smoothness of Schrödinger operator potential in the case of Gevrey type asymptotics of the gaps, J. Funct. Anal. 195 (2002), 89–128.

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Djakov and B. Mityagin, Spectral gaps of the periodic Schrödinger operator when its potential is an entire function, Adv. Appl. Math. 31 (2003), 562–596.

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Djakov and B. Mityagin, Spectral triangles of Schrödinger operators with complex potentials, Selecta Math. 9 (2003), 495–528.

    Article  MATH  MathSciNet  Google Scholar 

  13. P. Djakov and B. Mityagin, Instability zones of 1D periodic Schrödinger and Dirac operators, Uspehi Mat. Nauk 61 (2006), no. 4 (370), 77–183.

    MathSciNet  Google Scholar 

  14. N. Dunford, A survey of the theory of spectral operators, Bull. Amer. Math. Soc. 64 (1958), 217–274.

    Article  MATH  MathSciNet  Google Scholar 

  15. N. Dunford and J. T Schwartz, Linear Operators, Part II: Spectral Theory, Wiley-Interscience, New York, 1988.

    Google Scholar 

  16. N. Dunford and J. T Schwartz, Linear Operators, Part III: Spectral Operators, Wiley-Interscience, New York, 1988.

    Google Scholar 

  17. M. S. P. Eastham, The Spectral Theory of Periodic Differential Equations, Scottish Academic Press, Edinburgh and London, 1973.

    MATH  Google Scholar 

  18. W. Eberhard, G. Freiling, and A. Zettl, Sturm-Liouville problems with singular non-selfadjoint boundary conditions, Math. Nachr. 278 (2005), 1509–1523.

    Article  MATH  MathSciNet  Google Scholar 

  19. S. R. Foguel, The relation between a spectral operator and its scalar part, Pacific J. Math. 8 (1958), 51–65.

    MATH  MathSciNet  Google Scholar 

  20. V. N. Funtakov, Expansions in eigenfunctions of nonself-adjoint second-order differential equations, Differential Equations 6 (1970), 1528–1535.

    MathSciNet  Google Scholar 

  21. M. G. Gasymov, Spectral analysis of a class of second-order non-self-adjoint differential operators, Funct. Anal. Appl. 14 (1980), 11–15.

    MATH  Google Scholar 

  22. M. G. Gasymov, Spectral analysis of a class of ordinary differential operators with periodic coefficients, Sov. Math. Dokl. 21 (1980), 718–721.

    MATH  Google Scholar 

  23. I. M. Gelfand, Expansion in characteristic functions of an equation with periodic coefficients, Doklady Akad Nauk SSSR 73 (1950), 1117–1120.

    MathSciNet  Google Scholar 

  24. F. Gesztesy and V. Tkachenko, When is a non-self-adjoint Hill operator a spectral operator of scalar type?, C. R. Math. Acad. Sci. Paris 343 (2006), 239–242.

    MATH  MathSciNet  Google Scholar 

  25. F. Gesztesy and R. Weikard, Floquet theory revisited, in Differential Equations and Mathematical Physics, I. Knowles (ed.), International Press, Boston, 1995, pp. 67–84.

    Google Scholar 

  26. F. Gesztesy and R. Weikard, Picard potentials and Hill’s equation on a torus, Acta Math. 176 (1996), 73–107.

    Article  MATH  MathSciNet  Google Scholar 

  27. F. Gesztesy and R. Weikard, A characterization of all elliptic algebro-geometric solutions of the AKNS hierarchy, Acta Math. 181 (1998), 63–108.

    Article  MATH  MathSciNet  Google Scholar 

  28. F. Gesztesy and R. Weikard, Elliptic algebro-geometric solutions of the KdV and AKNS hierarchies-an analytic approach, Bull. Amer. Math. Soc. (N. S.) 35 (1998), 271–317.

    Article  MATH  MathSciNet  Google Scholar 

  29. V. Guillemin and A. Uribe, Hardy functions and the inverse spectral method, Comm. Partial Differential Equations 8 (1983), 1455–1474.

    Article  MATH  MathSciNet  Google Scholar 

  30. E. L. Ince, Ordinary Differential Equations, Dover, New York, 1956.

    Google Scholar 

  31. G. M. Kesel’man, On the unconditional convergence of eigenfunction expansions of certain differential operators, Izv. Vyssh. Uchebn. Zaved. Mat. 39(2) (1964), 82–93.

    MathSciNet  Google Scholar 

  32. S. Kotani, Generalized Floquet theory for stationary Schrödinger operators in one dimension, Chaos Solitons Fractals 8 (1997), 1817–1854.

    Article  MATH  MathSciNet  Google Scholar 

  33. B. Ya. Levin, Lectures on Entire Functions, Amer. Math. Soc., Providence, RI, 1996.

    MATH  Google Scholar 

  34. V. É. Ljance, On a generalization of the concept of spectral measure, Amer. Math. Soc. Transl. (2) 51 (1966), 273–315.

    Google Scholar 

  35. U. I. Lyubič and V. I. Macaev, On the spectral theory of linear operators in Banach spaces, Soviet Math. Dokl. 1 (1960), 184–186.

    MathSciNet  Google Scholar 

  36. Ju. I. Lyubič and V. I. Macaev, Operators with separable spectrum, Mat. Sb. (N.S.) 5698) (1962), 433–468.

    MathSciNet  Google Scholar 

  37. A. Makin, Convergence of expansions in the root functions of periodic boundary value problems, Dokl. Math. 73 (2006), 71–76.

    Article  MATH  Google Scholar 

  38. M. M. Malamud, On the completeness of the root vector system of the Sturm-Liouville operator with general boundary conditions, Dokl. Math. 77 (2008), No. 2, 1–4.

    Article  Google Scholar 

  39. V. A. Marchenko, Expansion in eigenfunctions of non-self-adjoint singular differential operators of second order, Amer. Math. Soc. Transl. (2) 25 (1963), 77–130.

    Google Scholar 

  40. V. A. Marchenko, Sturm-Liouville operators and Applications, Birkhäuser, Basel, 1986.

    MATH  Google Scholar 

  41. V. A. Marchenko and I. V. Ostrovskii, A characterization of the spectrum of Hill’s operator, Math. USSR Sb. 26 (1975), 493–554.

    Article  Google Scholar 

  42. D. McGarvey, Operators commuting with translations by one. Part I. Representation theorems, J. Math. Anal. Appl. 4 (1962), 366–410.

    Article  MATH  MathSciNet  Google Scholar 

  43. D. McGarvey, Operators commuting with translations by one. Part II. Differential operators with periodic coefficients in L p (− ∞, ∞), J. Math. Anal. Appl. 11 (1965), 564–596.

    Article  MATH  MathSciNet  Google Scholar 

  44. D. McGarvey, Operators commuting with translations by one. Part III. Perturbation results for periodic differential operators, J. Math. Anal. Appl. 12 (1965), 187–234.

    Article  MATH  MathSciNet  Google Scholar 

  45. D. McGarvey, Linear differential systems with periodic coefficients involving a large parameter, J. Differential Equations 2 (1966), 115–142.

    Article  MATH  MathSciNet  Google Scholar 

  46. N. N. Meiman, The theory of one-dimensional Schrödinger operators with a periodic potential, J. Math. Phys. 18 (1977), 834–848.

    Article  MathSciNet  Google Scholar 

  47. V. P. Mihailov, Riesz bases in L2(0, 1), Sov. Math. Dokl. 3 (1962), 851–8

    Google Scholar 

  48. A. Minkin, Resolvent growth and Birkhoff-regularity, J. Math. Anal. Appl. 323 (2006), 387–402.

    Article  MATH  MathSciNet  Google Scholar 

  49. M. A. Naimark, Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint differential operator of the second order on a semi-axis, Amer. Math. Soc. Transl. (2) 16 (1960), 103–193.

    MathSciNet  Google Scholar 

  50. M. A. Naimark, Linear Differential Operators, Part II, Ungar, New York, 1968.

    MATH  Google Scholar 

  51. B. S. Pavlov, Basicity of an exponential system and Muckenhoupt’s condition, Sov. Math. Dokl. 20 (1979), 655–659.

    MATH  Google Scholar 

  52. L. A. Pastur and V. A. Tkachenko, Spectral theory of Schrödinger operators with periodic complex-valued potentials, Funct. Anal. Appl. 22 (1988), 156–158.

    Article  MATH  MathSciNet  Google Scholar 

  53. L. A. Pastur and V. A. Tkachenko, An inverse problem for a class of one-dimensional Schrödinger operators with a complex periodic potential, Math. USSR Izv. 37 (1991), 611–629.

    Article  MathSciNet  Google Scholar 

  54. L. A. Pastur and V. A. Tkachenko, Geometry of the spectrum of the one-dimensional Schrödinger equation with a periodic complex-valued potential, Math. Notes 50 (1991), 1045–1050.

    MathSciNet  Google Scholar 

  55. M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV: Analysis of Operators, Academic Press, New York, 1978.

    MATH  Google Scholar 

  56. F. S. Rofe-Beketov, The spectrum of non-selfadjoint differential operators with periodic coefficients, Sov. Math. Dokl. 4 (1963), 1563–1566.

    Google Scholar 

  57. J.-J. Sansuc and V. Tkachenko, Spectral parametrization of non-selfadjoint Hill’s operators, J. Differential Equations 125 (1996), 366–384.

    Article  MATH  MathSciNet  Google Scholar 

  58. J.-J. Sansuc and V. Tkachenko, Spectral properties of non-selfadjoint Hill’s operators with smooth potentials, in Algebraic and Geometric Methods in Mathematical Physics, (A. Boutel de Monvel and V. Marchenko eds.), Kluwer, Dordrecht, 1996, pp. 371–385.

    Google Scholar 

  59. J.-J. Sansuc and V. Tkachenko, Characterization of the periodic and antiperiodic spectra of nonselfadjoint Hill’s operators, in New Results in Operator Theory and its Applications, (I. Gohberg and Yu. Lubich eds.), Birkhäuser, Basel, 1997, pp. 216–224.

    Google Scholar 

  60. J. Schwartz, Some non-selfadjoint operators, Comm. Pure Appl. Math. 13 (1960), 609–639.

    Article  MATH  MathSciNet  Google Scholar 

  61. M. I. Serov, Certain properties of the spectrum of a non-selfadjoint differential operator of the second order, Sov. Math. Dokl. 1 (1960), 190–192.

    MATH  MathSciNet  Google Scholar 

  62. K. C. Shin, On half-line spectra for a class of non-self-adjoint Hill operators, Math. Nachr. 261-262 (2003), 171–175.

    Article  Google Scholar 

  63. K. C. Shin, Trace formulas for non-self-adjoint Schrödinger operators and some applications, J. Math. Anal. Appl. 299 (2004), 19–39.

    Article  MATH  MathSciNet  Google Scholar 

  64. K. C. Shin, On the shape of spectra for non-self-adjoint periodic Schrödinger operators, J. Phys. A 37 (2004), 8287–8291.

    Article  MATH  MathSciNet  Google Scholar 

  65. E. C. Titchmarsh, Eigenfunction problems with periodic potentials, Proc. Roy. Soc. London A 203 (1950), 501–514.

    Article  MATH  MathSciNet  Google Scholar 

  66. E. C. Titchmarsh, Eigenfunction Expansions associated with Second-Order Differential Equations, Part II, Oxford University Press, Oxford, 1958.

    Google Scholar 

  67. V. A. Tkachenko, Spectral analysis of the one-dimensional Schrödinger operator with periodic complex-valued potential, Sov. Math. Dokl. 5 (1964), 413–415.

    MATH  Google Scholar 

  68. V. A. Tkachenko, Spectral analysis of a nonselfadjoint Hill operator, Sov. Math. Dokl. 45 (1992), 78–82.

    MathSciNet  Google Scholar 

  69. V. A. Tkachenko, Discriminants and generic spectra of nonselfadjoint Hill’s operators, Adv. Sov. Math. 19 (1994), 41–71.

    MathSciNet  Google Scholar 

  70. V. A. Tkachenko, Spectra of non-selfadjoint Hill’s operators and a class of Riemann surfaces, Ann. of Math. (2) 143 (1996), 181–231.

    Article  MATH  MathSciNet  Google Scholar 

  71. V. Tkachenko, Characterization of Hill operators with analytic potentials, Integral Equations Operator Theory 41 (2001), 360–380.

    Article  MATH  MathSciNet  Google Scholar 

  72. V. Tkachenko, Non-selfadjoint Sturm-Liouville operators with multiple spectra, in Interpolation Theory, Systems Theory and Related Topics, D. Alpay, I. Gohberg, V. Vinnikov (eds.), Birkhäuser, Basel, 2002, pp. 403–414.

    Google Scholar 

  73. O. A. Veliev, The one-dimensional Schrödinger operator with a periodic complex-valued potential, Sov. Math. Dokl. 21 (1980), 291–295.

    MATH  Google Scholar 

  74. O. A. Veliev, Spectrum and spectral singularities of differential operators with complex-valued periodic coefficients, Differential Equations 19 (1983), 983–989.

    MATH  MathSciNet  Google Scholar 

  75. O. A. Veliev, Spectral expansions related to non-self-adjoint differential operators with periodic coefficients, Differential Equations 22 (1986), 1403–1408.

    MATH  MathSciNet  Google Scholar 

  76. O. A. Veliev and M. Toppamuk Duman, The spectral expansion for a nonself-adjoint Hill operator with a locally integrable potential, J. Math. Anal. Appl. 265 (2002), 76–90.

    Article  MATH  MathSciNet  Google Scholar 

  77. V. Ja. Volk, Spectral resolution for a class of non-selfadjoint operators, Sov. Math. Dokl. 4 (1963), 1279–1281.

    Google Scholar 

  78. R. Weikard, On Hill’s equation with a singular complex-valued potential, Proc. London Math. Soc. (3) 76 (1998), 603–633.

    Article  MATH  MathSciNet  Google Scholar 

  79. R. Weikard, On a theorem of Hochstadt, Math. Ann. 311 (1998), 95–105.

    Article  MATH  MathSciNet  Google Scholar 

  80. J. Wermer, Commuting spectral measures on Hilbert space, Pacific J. Math. 4 (1954), 355–361.

    MATH  MathSciNet  Google Scholar 

  81. V. A. Zheludev, Perturbations of the spectrum of the Schroedinger operator with a complex periodic potential, in Topics in Mathematical Physics 3, Spectral Theory, M. Sh. Birman (ed.), Consultants Bureau, New York, 1969, pp. 25–41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz Gesztesy.

Additional information

Based upon work supported by the National Science Foundation under Grant No. DMS-0405526 and the Israel Science Foundation under Grant No. 186/01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gesztesy, F., Trachenko, V. A criterion for Hill operators to be spectral operators of scalar type. J Anal Math 107, 287–353 (2009). https://doi.org/10.1007/s11854-009-0012-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-009-0012-5

Keywords

Navigation