Skip to main content
Log in

Trace ideals for pseudo-differential operators and their commutators with symbols in α-modulation spaces

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

That symbols in the modulation space M 1,1 generate pseudo-differential operators of the trace class was first stated by Feichtinger and proved by Gröchenig in [13]. In this paper, we show that the same is true if we replace M 1,1 by the more general α-modulation spaces, which include modulation spaces (α = 0) and Besov spaces (α = 1) as special cases. The result with α = 0 corresponds to that of Gröchenig, and the one with α = 1 is a new result which states the trace property of the operators with symbols in the Besov space. As an application, we discuss the trace property of the commutator [α (X, D), a], where; a(χ) is a Lipschitz function and σ(χ, ξ) belongs to an α-modulation space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Borup and M. Nielsen, Banach frames for multivariate α-modulation spaces, J. Math. Anal. Appl. 321 (2006), 880–895.

    Article  MATH  MathSciNet  Google Scholar 

  2. L. Borup and M. Nielsen, Boundedness for pseudo-differential operators on multivariate α-modulation spaces, Ark. Mat. 44 (2006), 241–259.

    Article  MATH  MathSciNet  Google Scholar 

  3. E. Buzano and F. Nicola, Pseudo-differential operators and Schatten-von Neumann classes, in Advances in Pseudo-differential Operators, Birkhäuser, Basel, 2004, pp. 117–130.

    Google Scholar 

  4. A.P. Calderóon, Commutators of singular integral operators, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1092–1099.

    Article  MathSciNet  Google Scholar 

  5. R.R. Coifman and Y. Meyer, Commutateurs d’intégrales singulières et opérateurs multilinéaires, Ann. Inst. Fourier (Grenoble) 28 (1978), 177–202.

    MATH  MathSciNet  Google Scholar 

  6. E. Cordero and K. Gröchenig, Time-frequency analysis of localization operators, J. Funct. Anal. 205 (2003), 107–131.

    Article  MATH  MathSciNet  Google Scholar 

  7. I. Daubechies, On the distributions corresponding to bounded operators in the Weyl quantization, Comm. Math. Phys. 75 (1980), 229–238.

    Article  MATH  MathSciNet  Google Scholar 

  8. H.G. Feichtinger and P. Grobner, Banach spaces of distributions defined by decomposition methods, I, Math. Nachr. 123 (1985), 97–120.

    Article  MATH  MathSciNet  Google Scholar 

  9. C. Fernández and A. Galbis, Compactness of time-frequency localization operators on L 2 (ℝ d ), J. Funct. Anal. 233 (2006), 335–350.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Fornasier, Banach frames for α-modulation spaces, Appl. Comput. Harmon. Anal. 22 (2007), 157–175.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777–799.

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Gröbner, Banachräume Glatter Funktionen und Zerlegungsmethoden, Thesis, University of Vienna, 1992.

  13. K. Gröchenig, An uncertainty principle related to the Poisson summation formula, Studia Math. 121 (1996), 87–104.

    MATH  MathSciNet  Google Scholar 

  14. K. Gröchenig, A pedestrian’s approach to pseudo-differential operators, in Harmonic Analysis and Applications, Birkhäuser Boston, Boston, 2006, pp. 139–169.

    Chapter  Google Scholar 

  15. K. Gröchenig and C. Heil, Modulation spaces and pseudo-differential operators, Integral Equations Operator Theory 34 (1999), 439–457.

    Article  MathSciNet  Google Scholar 

  16. C. Heil, J. Ramanathan and P. Topiwala, Singular values of compact pseudo-differential operators, J. Funct. Anal. 150 (1997), 426–452.

    Article  MATH  MathSciNet  Google Scholar 

  17. L. Hörmander, The Weyl calculus of pseudo-differential operators, Comm. Pure Appl. Math. 32 (1979), 360–444.

    Article  MathSciNet  Google Scholar 

  18. L. Hörmander, The Analysis of Linear Partial Differential Operators III, Springer-Verlag, Berlin, 1985.

    MATH  Google Scholar 

  19. M. Kobayashi, M. Sugimoto and N. Tomita, On the L 2-boundedness of pseudo-differential operators and their commutators with symbols in α-modulation spaces, J. Math. Anal. Appl., to appear.

  20. D. Labate, Pseudo-differential operators on modulation spaces, J. Math. Anal. Appl. 262 (2001), 242–255.

    Article  MATH  MathSciNet  Google Scholar 

  21. J. Marschall, Pseudo-differential operators with nonregular symbols of the class S m ρ, δ , Comm. Partial Differential Equations 12 (1987), 921–965.

    Article  MATH  MathSciNet  Google Scholar 

  22. K. Okoudjou, Embedding of some classical Banach spaces into modulation spaces, Proc. Amer. Math. Soc. 132 (2004), 1639–1647.

    Article  MATH  MathSciNet  Google Scholar 

  23. J.C.T. Pool, Mathematical aspects of the Weyl correspondence, J. Math. Phys. 7 (1966), 66–76.

    Article  MATH  MathSciNet  Google Scholar 

  24. B. Simon, Trace Ideals and their Applications, second edition, American Mathematical Society, Providence, RI, 2005.

    MATH  Google Scholar 

  25. J. Sjöstrand, An algebra of pseudo-differential operators, Math. Res. Lett. 1 (1994), 185–192.

    MATH  MathSciNet  Google Scholar 

  26. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970.

    MATH  Google Scholar 

  27. M. Sugimoto, Lp-boundedness of pseudo-differential operators satisfying Besov estimates I, J. Math. Soc. Japan 40 (1988), 105–122.

    Article  MATH  MathSciNet  Google Scholar 

  28. M. Sugimoto and N. Tomita, The dilation property of modulation spaces and their inclusion relation with Besov spaces, J. Funct. Anal. 248 (2007), 79–106.

    Article  MATH  MathSciNet  Google Scholar 

  29. J. Toft, Continuity properties for modulation spaces, with applications to pseudo-differential calculus, I, J. Funct. Anal. 207 (2004), 399–429.

    Article  MATH  MathSciNet  Google Scholar 

  30. J. Toft, Schatten-von Neumann properties in the Weyl calculus, and calculus of metrics on symplectic vector spaces, Ann. Glob. Anal. Geom. 30 (2006), 169–209.

    Article  MATH  MathSciNet  Google Scholar 

  31. J. Toft, Continuity and Schatten properties for pseudo-differential operators on modulation spaces, in Modern Trends in Pseudo-differential Operators, Birkhauser, Basel, 2007, pp. 173–206.

    Chapter  Google Scholar 

  32. J. Toft, Continuity and Schatten properties for Toeplitz operators on modulation spaces, in Modern Trends in Pseudo-differential Operators, Birkhauser, Basel, 2007, pp. 313–328.

    Chapter  Google Scholar 

  33. H. Triebel, Theory of Function Spaces, Birkhäuser, Basel-Boston-Stuttgart, 1983.

    Google Scholar 

  34. K. Zhu, Operator Theory in Function Spaces, second edition, American Mathematical Society, Providence, RI, 2007.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaharu Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, M., Sugimoto, M. & Tomita, N. Trace ideals for pseudo-differential operators and their commutators with symbols in α-modulation spaces. J Anal Math 107, 141–160 (2009). https://doi.org/10.1007/s11854-009-0006-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-009-0006-3

Keywords

Navigation