Skip to main content
Log in

A general technique to prove upper bounds for singular perturbation problems

  • Published:
Journal d'Analyse Mathématique Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. L. Ambrosio, Metric space valued functions of bounded variation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), 439–478.

    MATH  MathSciNet  Google Scholar 

  2. L. Ambrosio, C. De Lellis and C. Mantegazza, Line energies for gradient vector fields in the plane, Calc. Var. Partial Differential Equations 9 (1999), 327–355.

    Article  MATH  MathSciNet  Google Scholar 

  3. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, New York, 2000.

    MATH  Google Scholar 

  4. P. Aviles and Y. Giga, A mathematical problem related to the physical theory of liquid crystal configurations, Proc. Centre Math. Anal. Austral. Nat. Univ. 12 (1987), 1–16.

    MathSciNet  Google Scholar 

  5. P. Aviles and Y. Giga, On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for gradient fields, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), 1–17.

    MATH  MathSciNet  Google Scholar 

  6. S. Conti and B. Schweizer, A sharp-interface limit for a two-well problem in geometrically linear elasticity. Arch. Ration. Mech. Anal. 179 (2006), 413–452.

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Conti and B. Schweizer, Rigidity and gamma convergence for solid-solid phase transitions with SO(2)-invariance, Comm. Pure Appl. Math. 59 (2006), 830–868.

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Conti, I. Fonseca, and G. Leoni, A Γ-convergence result for the two-gradient theory of phase transitions, Comm. Pure Appl. Math. 55 (2002), 857–936.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Conti and C. De Lellis, Sharp upper bounds for a variational problem with singular perturbation, Math. Ann. 338 (2007), 119–146.

    Article  MATH  MathSciNet  Google Scholar 

  10. C. De Lellis, An example in the gradient theory of phase transitions ESAIM Control Optim. Calc. Var. 7 (2002), 285–289 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  11. A. DeSimone, S. Müller, R. V. Kohn and F. Otto, A compactness result in the gradient theory of phase transitions, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), 833–844.

    Article  MATH  MathSciNet  Google Scholar 

  12. L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, 1998.

    MATH  Google Scholar 

  13. L. C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL, 1992.

    MATH  Google Scholar 

  14. I. Fonseca and C. Mantegazza, Second order singular perturbation models for phase transitions, SIAM J. Math. Anal. 31 (2000), 1121–1143 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  15. D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Elliptic Type, 2nd ed., Springer-Verlag, Berlin-Heidelberg, 1983.

    Google Scholar 

  16. E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser Verlag, Basel, 1984.

    MATH  Google Scholar 

  17. W. Jin and R.V. Kohn, Singular perturbation and the energy of folds, J. Nonlinear Sci. 10 (2000), 355–390.

    Article  MATH  MathSciNet  Google Scholar 

  18. L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal. 98 (1987), 123–142.

    Article  MATH  MathSciNet  Google Scholar 

  19. L. Modica and S. Mortola, Il limite nella Γ-convergenza di una famiglia di funzionali ellittici, Boll. Un. Mat. Ital. A (5) 14 (1977), 526–529.

    MATH  MathSciNet  Google Scholar 

  20. L. Modica and S. Mortola, Un esempio di Γ -convergenza, Boll. Un. Mat. Ital. B (5) 14 (1977), 285–299.

    MATH  MathSciNet  Google Scholar 

  21. A. Poliakovsky, A method for establishing upper bounds for singular perturbation problems, C. R. Math. Acad. Sci. Paris 341 (2005), 97–102.

    MATH  MathSciNet  Google Scholar 

  22. A. Poliakovsky, On a singular perturbation problem related to optimal lifting in BV-space, Calc. Var. Partial Differential Equations, 28 (2007), 411–426.

    Article  MATH  MathSciNet  Google Scholar 

  23. A. Poliakovsky, Upper bounds for singular perturbation problems involving gradient fields, J. Eur. Math. Soc. 9 (2007), 1–43.

    Article  MATH  MathSciNet  Google Scholar 

  24. P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Arch. Rational Mech. Anal. 101 (1988), 209–260.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. I. Volpert and S. I. Hudjaev, Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics, Martinus Nijhoff Publishers, Dordrecht, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkady Poliakovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poliakovsky, A. A general technique to prove upper bounds for singular perturbation problems. J Anal Math 104, 247–290 (2008). https://doi.org/10.1007/s11854-008-0024-6

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-008-0024-6

Navigation