Skip to main content
Log in

Boundary constructions of petals at the Wolff point in the parabolic case

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

In the same spirit of the classical Leau-Fatou flower theorem, we prove the existence of a petal, with vertex at the Wolff point, for a holomorphic self-map f of the open unit disc Δ ⊂ ℂ of parabolic type. The result is obtained in the framework of two interesting dynamical situations which require different kinds of regularity of f at the Wolff point τ: f of non-automorphism type and \(\Re e(f''(\tau )) > 0\) or f injective of automorphism type, fC 3+ɛ(τ) and \(\Re e(f''(\tau )) = 0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abate, Iteration Theory of Holomorphic Maps on Taut Manifolds, Mediterranean Press, 1989.

  2. H. Alexander, Boundary behaviour of certain holomorphic maps, Michigan Math. J. 38 (1991), 117–128.

    Article  MATH  MathSciNet  Google Scholar 

  3. H. Alexander, A weak Hopf lemma for holomorphic mappings, Indag. Math. (N. S.) 6 (1995), 1–5.

    Article  MATH  MathSciNet  Google Scholar 

  4. C. Bisi, Iteration Theory, Commuting Holomorphic Maps and Complex Dynamics at the Wolff Point, Ph.D. Thesis, University of Florence, 2001.

  5. C. Bisi and G. Gentili, Commuting holomorphic maps and linear fractional models, Complex Variables Theory Appl. 45 (2001), 47–71.

    MATH  MathSciNet  Google Scholar 

  6. P. S. Bourdon and J. H. Shapiro, Cyclic Phenomena for Composition Operators, Mem. Amer. Math. Soc. 125 (1997), no. 596.

  7. D. M. Burns and S. G. Krantz, Rigidity of holomorphic mappings and a new Schwarz Lemma at the boundary, J. Amer. Math. Soc. 7 (1994), 661–676.

    Article  MATH  MathSciNet  Google Scholar 

  8. F. Bracci, R. Tauraso and F. Vlacci, Identity principles for commuting holomorphic self-maps of the unit disc, J. Math. Anal. Appl. 270 (2002), 451–473.

    Article  MATH  MathSciNet  Google Scholar 

  9. L. Carleson and T. W. Gamelin, Complex Dynamics, Springer, New York, 1993.

    MATH  Google Scholar 

  10. J. Ecalle, Les Fonctions Résurgentes. Tome I, in Publications Mathématiques d’Orsay 81, vol. 5, Université de Paris-Sud Département de Mathématique, Orsay, 1981.

    Google Scholar 

  11. J. Ecalle, Les Fonctions Résurgentes. Tome II, in Publications Mathématiques d’Orsay 81, vol. 6, Université de Paris-Sud Département de Mathématique, Orsay, 1981.

    Google Scholar 

  12. J. Ecalle, Les Fonctions Résurgentes. Tome III in Publications Mathématiques d’Orsay, vol. 85, Université de Paris-Sud, Département de Mathématiques, Orsay, 1985.

    Google Scholar 

  13. J. C. Yoccoz, Petits diviseurs en dimension 1, Asterisque 231 (1995).

  14. J. Mather, Commutators of diffeomorphisms, Comm. Math. Helv. 48 (1973), 195–233.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Milnor Dynamics in One Complex Variable, Introductory Lectures, Friedr. Vieweg & Sohn, Braunschweig, 1999.

    MATH  Google Scholar 

  16. R. Perez-Marco, Non-linearizable holomorphic dynamics having an uncountable number of symmetries, Invent. Math. 119 (1995), 67–127.

    Article  MATH  MathSciNet  Google Scholar 

  17. R. Perez-Marco, Fixed points and circle maps, Acta Math. 179 (1997), 243–294.

    Article  MATH  MathSciNet  Google Scholar 

  18. W. Rudin, Real and Complex Analysis, McGraw Hill, New York, 1966.

    MATH  Google Scholar 

  19. F. Sergeraert, Feuilletages et difféomorphismes infiniment tangents à l’identité, Invent. Math. 39 (1977), 253–275.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, New York, 1993.

    MATH  Google Scholar 

  21. S. M. Voronin, Analytic classification of germs of conformal mappings (ℂ, 0) to (ℂ, 0) with identity linear part, Funct. Anal. Appl. 15 (1981), 1–13.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cinzia Bisi.

Additional information

Partially supported by PRIN Proprietà geometriche delle varietà reali e complesse.

Partially supported by GNSAGA of the Istituto Nazionale di Alta Matematica, Rome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bisi, C., Gentili, G. Boundary constructions of petals at the Wolff point in the parabolic case. J Anal Math 104, 1–11 (2008). https://doi.org/10.1007/s11854-008-0013-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-008-0013-9

Keywords

Navigation