Skip to main content
Log in

Subsets of rectifiable curves in Hilbert space-the analyst’s TSP

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We study one dimensional sets (Hausdorff dimension) lying in a Hilbert space. The aim is to classify subsets of Hilbert spaces that are contained in a connected set of finite Hausdorff length. We do so by extending and improving results of Peter Jones and Kate Okikiolu for sets in ℝd. Their results formed the basis of quantitative rectifiability in ℝd. We prove a quantitative version of the following statement: a connected set of finite Hausdorff length (or a subset of one), is characterized by the fact that inside balls at most scales aroundmost points of the set, the set lies close to a straight line segment (which depends on the ball). This is done via a quantity, similar to the one introduced in [Jon90], which is a geometric analogue of the Square function. This allows us to conclude that for a given set K, the ℓ2 norm of this quantity (which is a function of K) has size comparable to a shortest (Hausdorff length) connected set containing K. In particular, our results imply that, with a correct reformulation of the theorems, the estimates in [Jon90, Oki92] are independent of the ambient dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Arora, Approximation schemes for NP-hard geometric optimization problems: a survey, Math. Program. 97 (2003), Ser. B, 43–69.

    MATH  MathSciNet  Google Scholar 

  2. C. J. Bishop and P. W. Jones, Harmonic measure and arclength, Ann. of Math. (2) 132 (1990), 511–547.

    Article  MathSciNet  Google Scholar 

  3. M. Christ, A T(b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), 601–628.

    MathSciNet  Google Scholar 

  4. G. David, Wavelets and Singular Integrals on Curves and Surfaces, Lecture Notes in Mathematics 1485, Springer-Verlag, Berlin, 1991.

    Google Scholar 

  5. G. David and S. Semmes, Analysis of and on Uniformly Rectifiable Sets, Ame. Math. Soc., Providence, RI, 1993.

    MATH  Google Scholar 

  6. F. Ferrari, B. Franchi, and H. Pajot, The geometric traveling salesman theorem in the Heisenberg group, Rev. Mat. Iberoamericana 23 (2007), 437–480.

    MATH  MathSciNet  Google Scholar 

  7. I. Hahlomaa, Menger curvature and Lipschitz parametrizations in metric spaces, Fund.Math. 185 (2005), 143–169.

    MATH  MathSciNet  Google Scholar 

  8. I. Hahlomaa, Curvature integral and Lipschitz parametrizations in 1-regular metric spaces, Ann. Acad. Sci. Fenn. Math. 32 (2007), 99–123.

    MATH  MathSciNet  Google Scholar 

  9. D. S. Johnson and L. A. McGeoch, Experimental analysis of heuristics for the STSP, in The Traveling Salesman Problem and its Variations, Kluwer Acad. Publ., Dordrecht, 2002, pp. 369–443.

    Google Scholar 

  10. P. W. Jones, Lipschitz and bi-Lipschitz functions, Rev. Mat. Iberoamericana 4 (1988), 115–121.

    MATH  MathSciNet  Google Scholar 

  11. P. W. Jones, Rectifiable sets and the traveling salesman problem, Invent. Math. 102 (1990), 1–15.

    Article  MATH  MathSciNet  Google Scholar 

  12. C. Kenyon and R. Kenyon, How to take short cuts, Discrete Comput. Geom. 8 (1992), 251–264.

    Article  MATH  MathSciNet  Google Scholar 

  13. G. Lerman, Quantifying curvelike structures of measures by using L 2 Jones quantities, Comm. Pure Appl. Math. 56 (2003), 1294–1365.

    Article  MATH  MathSciNet  Google Scholar 

  14. P. Mattila, Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability, Cambridge University Press, Cambridge, 1995.

    MATH  Google Scholar 

  15. K. Okikiolu, Characterization of subsets of rectifiable curves in Rn, J. London Math. Soc. (2) 46 (1992), 336–348.

    Article  MATH  MathSciNet  Google Scholar 

  16. H. Pajot, Analytic Capacity, Rectifiability, Menger Curvature and the Cauchy Integral, Lecture Notes in Mathematics 1799, Springer-Verlag, Berlin, 2002.

    MATH  Google Scholar 

  17. R. Schul, Subsets of Rectifable Curves in Hilbert Space and the Analyst’s TSP, PhD thesis, Yale University, 2005.

  18. R. Schul, Ahlfors-regular curves in metric spaces, Ann. Acad. Sci. Fenn. Math. 32 (2007), 431–460.

    MathSciNet  Google Scholar 

  19. R. Schul, Analyst’s traveling salesman theorems. A survey, in In the Tradition of Ahlfors-Bers IV, Contemp. Math. 432, Amer. Math. Soc., Providence, RI, 2007, pp. 209–220.

    Google Scholar 

  20. E. M. Stein and J.-O. Stromberg, Behavior of maximal functions in R n for large n, Ark.Mat. 21 (1983), 259–269.

    Article  MATH  MathSciNet  Google Scholar 

  21. E. M. Stein, Some results in harmonic analysis in R n, for n → ∞, Bull. Amer. Math. Soc. (N.S.) 9 (1983), 71–73.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raanan Schul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schul, R. Subsets of rectifiable curves in Hilbert space-the analyst’s TSP. J Anal Math 103, 331–375 (2007). https://doi.org/10.1007/s11854-008-0011-y

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-008-0011-y

Keywords

Navigation