Skip to main content
Log in

Some Fourier series with gaps

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We examine diverse local and global aspects of the family of Fourier series ∑n −α e(n k x). In particular, combining number theoretical and harmonic analytic arguments, we study differentiability, Hölder continuity, spectrum of singularities and fractal dimension of the graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. I. Butzer and E. I. Stark, “Riemann’s example” of a continuous nondifferentiable function in the light of two letters (1865) of Christoffel to Prym, Bull. Soc. Math. Belg. 38 (1986), 45–73.

    MATH  MathSciNet  Google Scholar 

  2. F. Chamizo, Automorphic forms and differentiability properties, Trans. Amer. Math. Soc. 356 (2004), 1909–1935.

    Article  MATH  MathSciNet  Google Scholar 

  3. F. Chamizo and A. Córdoba, Differentiability and dimension of some fractal Fourier series, Adv. Math. 142 (1999), 335–354.

    Article  MATH  MathSciNet  Google Scholar 

  4. H. Davenport, Multiplicative Number Theory, 2nd ed., revised by H. L. Montgomery, Springer-Verlag, New York-Berlin, 1980.

    MATH  Google Scholar 

  5. J. J. Duistermaat, Self-similarity of “Riemann’s nondifferentiable function,” Nieuw Arch. Wisk. (4) 9 (1991), 303–337.

    MATH  MathSciNet  Google Scholar 

  6. P. Erdős, On the distribution of the convergents of almost all real numbers, J. Number Theory 2 (1970), 425–441.

    Article  MathSciNet  Google Scholar 

  7. K. J. Falconer, Fractal Geometry, Mathematical Foundations and Applications, 2nd ed., John Wiley, Hoboken, NJ, 2003.

    MATH  Google Scholar 

  8. J. L. Gerver, The differentiability of the Riemann function at certain rational multiples of π, Amer. J. Math. 92 (1970), 33–55.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. L. Gerver, On cubic lacunary Fourier series, Trans. Amer. Math. Soc. 355 (2003), 4297–4347.

    Article  MATH  MathSciNet  Google Scholar 

  10. G. H. Hardy, Weierstrass’s non-differentiable function, Trans. Amer. Math. Soc. 17 (1916), 301–325.

    Article  MathSciNet  Google Scholar 

  11. G. H. Hardy and J. E. Littlewood, Some problems in diophantine approximation II, Acta Math. 37 (1914), 194–238.

    Google Scholar 

  12. D. R. Heath-Brown, Weyl’s inequality, Hua’s inequality, and Waring’s problem, J. London Math. Soc. (2) 38 (1988), 216–230.

    Article  MATH  MathSciNet  Google Scholar 

  13. D. R. Heath-Brown and S. J. Patterson, The distribution of Kummer sums at prime arguments, J. Reine Angew. Math. 310 (1979), 111–130.

    MATH  MathSciNet  Google Scholar 

  14. M. Holschneider and Ph. Tchamitchian, Pointwise analysis of Riemann’s ‘non differentiable’ function, Invent. Math. 105 (1991), 157–175.

    Article  MATH  MathSciNet  Google Scholar 

  15. L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer-Verlag, Berlin, Heidelberg, 1983.

    MATH  Google Scholar 

  16. K. F. Ireland and M. I. Rosen, A Classical Introduction to Modern Number Theory, Springer Verlag, New York-Berlin, 1982.

    MATH  Google Scholar 

  17. S. Jaffard, Local behavior of Riemann’s function, in Harmonic Analysis and Operator Theory (Caracas, 1994), Contemp. Math. 189 (1995), 287–307.

  18. S. Jaffard, The spectrum of singularities of Riemann’s function, Rev. Mat. Iberoamericana 12 (1996), 441–460.

    MATH  MathSciNet  Google Scholar 

  19. W. C. Winnie Li, Number Theory with Applications, World Scientific, River Edge, NJ, 1996.

    Google Scholar 

  20. W. Luther, The differentiability of Fourier gap series and “Riemann’s example” of a continuous, nondifferentiable function, J. Approx. Theory 48 (1986), 303–321.

    Article  MATH  MathSciNet  Google Scholar 

  21. S. D. Miller and W. Schmid, The highly oscillatory behavior of automorphic distributions for SL(2), Lett. Math. Phys. 69 (2004), 265–286.

    Article  MATH  MathSciNet  Google Scholar 

  22. H. L. Montgomery, Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., Providence, RI, 1994.

    MATH  Google Scholar 

  23. R. C. Vaughan, The Hardy-Littlewood Method, 2nd ed., Cambridge University Press, Cambridge, 1997.

    MATH  Google Scholar 

  24. K. Weierstrass, Über continuierliche Funktionen eines reellen Arguments, die für keinen Werth des letzteren einen bestimmten Differentialquotienten besitzen, Mathematische Werke II, Mayer u. Müller, Berlin, 1895, pp. 71–74.

    Google Scholar 

  25. A. Zygmund, Trigonometric Series, 2nd ed., Volumes I and II combined, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by the grant MTM 2005-04730 of the MEC. The second author is also supported by an FPU grant of the MEC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chamizo, F., Ubis, A. Some Fourier series with gaps. J Anal Math 101, 179–197 (2007). https://doi.org/10.1007/s11854-007-0007-z

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-007-0007-z

Keywords

Navigation