Skip to main content

Advertisement

Log in

Tsunami and storm sediments in Oman: Characterizing extreme wave deposits using terrestrial laser scanning

  • Published:
Journal of Coastal Conservation Aims and scope Submit manuscript

Abstract

Accurate determination of geometric parameters is key to a holistic understanding of storm and tsunami deposits and for modeling wave magnitudes responsible for the displacement of large boulders. We present a new approach in acquiring high-resolution geometric data on coastal boulder deposits related to extreme wave events. The reconstruction of boulder movements along coastlines contributes to a better understanding of storm and tsunami dynamics. Critical parameters for both determining their origin of the event, and providing more accurate modeling parameters, include boulder size, shape, weight, age and lithology. We used terrestrial laser scanning (TLS) on two sites with 327 boulders along the Oman coastline in order to prove the method’s validity. TLS results in very accurate and detailed three dimensional reconstructions of the boulders and can be used to reconstruct the origin of the boulders based on shape and texture. The method also provides refined size, volume and mass estimates for the boulders. According to the results at least 3 large-scale inundation events were recorded on the northeastern Oman coastline during the late Holocene. Dating results on displaced beach rock boulders suggest severe events around 7540 ± 120 cal yr. BP, 1175 ± 115 cal yr. BP and 265 ± 155 cal yr. BP, which each left a clear and distinctive coastal boulder ridge. The largest displaced boulder has a length of 7.36 m, a calculated mass of 120.5 t, and experienced a vertical uplift of 1.3 m during an inundation event. The results suggest a tsunamigenic origin of the coastal boulder trains, and highlight a potential of strong tsunami events along the Omani coastline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anonymous (1945) Earthquake in the Arabian Sea. Nature 156:712–713

    Google Scholar 

  • Armesto J, Ordóñez C, Alejano L, Arias P (2009) Terrestrial laser scanning used to determine the geometry of a granite boulder for stability analysis purposes. Geomorphology 106:271–277

    Article  Google Scholar 

  • Barbano MS, Pirrotta C, Gerardi F (2010) Large boulders along the south-eastern Ionian coast of Sicily: storm or tsunami deposits? Mar Geol 275:140–154

    Article  Google Scholar 

  • Beer A, Stagg JM (1946) Seismic Sea-wave of November 27, 1945. Nature 158:63

    Article  Google Scholar 

  • Blair TC, McPherson JG (1999) Grain-size and textural classification of coarse sedimentary particles. J Sediment Res 69:6–19

    Article  Google Scholar 

  • Brodu N, Lague D (2012) 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: applications in geomorphology. ISPRS J Photogramm Remote Sens 68:121–134

    Article  Google Scholar 

  • Buckley SJ, Howell JA, Enge HD, Kurz TH (2008) Terrestrial laser scanning in geology data acquisition, processing and accuracy considerations. J Geol Soc Lond 165:625–638

    Article  Google Scholar 

  • Burton D, Dunlap DB, Wood LJ, Flaig PP (2011) Lidar intensity as a remote sensor of rock properties. J Sediment Res 81:339–347. https://doi.org/10.2110/jsr.2011.31

    Article  Google Scholar 

  • Byrne DE, Sykes LR, Davis DM (1992) Great thrust earthquakes and aseismic slip along the plate boundary of the Makran subduction zone. J Geophyl Res: Solid Earth 97:449–478

    Article  Google Scholar 

  • Chagué-Goff C, Schneider J-L, Goff JR, Dominey-Howes D, Strotz L (2011) Expanding the proxy toolkit to help identify past events—lessons from the 2004 Indian Ocean tsunami and the 2009 South Pacific tsunami. Earth Sci Rev 107:107–122

    Article  Google Scholar 

  • Cignoni P, Corsini M, Ranzuglia G (2008) Meshlab an open-source 3d mesh processing system

  • Cox R, Lopes WA, Jahn KL (2017) Quantitative roundness analysis of coastal boulder deposits. Mar Geol. https://doi.org/10.1016/j.margeo.2017.03.003

  • Daneshmand M, Helmi A, Avots E, Noroozi F, Alisinanoglu F, Arslan HS, Gorbova J, Haamer RE, Ozcinar C, Anbarjafari G (2018) 3D scanning: a comprehensive survey. Cornell University Library, Ithaca

  • Darke D (2013) Oman, 3rd edn. Bradt travel guides. Bradt travel guides, London

  • Dawson AG, Stewart I (2007) Tsunami deposits in the geological record. Sediment Geol 200:166–183

    Article  Google Scholar 

  • Dibajnia M, Soltanpour M, Nairn R, Allahyar M (2010) Cyclone Gonu: the most intense tropical cyclone on record in the Arabian sea. In Charabi Y (ed) Indian ocean tropical cyclones and climate change. Springer, Dordrecht

  • Donato SV, Reinhardt EG, Boyce JI, Pilarczyk JE, Jupp BP (2009) Particle-size distribution of inferred tsunami deposits in Sur lagoon, Sultanate of Oman. Mar Geol 257:54–64

    Article  Google Scholar 

  • Engel M, May SM (2012) Bonaire's boulder fields revisited: evidence for Holocene tsunami impact on the leeward Antilles. Quat Sci Rev 54:126–141

    Article  Google Scholar 

  • Etienne S, Buckley M, Paris R, Nandasena AK, Clark K, Strotz L, Chagué-Goff C, Goff J, Richmond B (2011) The use of boulders for characterising past tsunamis: lessons from the 2004 Indian Ocean and 2009 South Pacific tsunamis. Earth Sci Rev 107:76–90

    Article  Google Scholar 

  • Falkenroth M, Schneider B, Hoffmann G (2018, In review) Beachrock as sea-level indicator – a case study at the coastline of Oman (Indian Ocean). Quaternary science reviews. https://doi.org/10.17632/vcgcpf4r76.1

  • Fang W, Huang XF, Zhang F, Li DR (2015) Intensity correction of terrestrial laser scanning data by estimating laser transmission function. IEEE Trans Geosci Remote Sens 53:942–951

    Article  Google Scholar 

  • Faro (2015) FARO® Laser Scanner Focus3D X 330 - Tech sheet

  • Fritz HM, Blount CD, Albusaidi FB, Al-Harthy AHM (2010) Cyclone Gonu storm surge in Oman. Estuar Coast Shelf Sci 86:102–106

    Article  Google Scholar 

  • Girardeau-Montaut D (2015) Cloud compare—3d point cloud and mesh processing software. Open Source Project

  • Goto K, Okada K, Imamura F (2009) Characteristics and hydrodynamics of boulders transported by storm waves at Kudaka Island, Japan. Mar Geol 262:14–24

    Article  Google Scholar 

  • Haggag M, Badry H (2012) Hydrometeorological modeling study of tropical cyclone Phet in the Arabian Sea in 2010. ACS 2:174–190

    Article  Google Scholar 

  • Hartigan JA, Wong MA (1979) Algorithm AS 136: A k-means clustering algorithm. J R Stat Soc: Ser C: Appl Stat 28:100–108

    Google Scholar 

  • Heidarzadeh M, Kijko A (2011) A probabilistic tsunami hazard assessment for the Makran subduction zone at the northwestern Indian Ocean. Nat Hazards 56:577–593

    Article  Google Scholar 

  • Heidarzadeh M, Satake K (2014) Possible sources of the tsunami observed in the northwestern Indian Ocean following the 2013 September 24 Mw 7.7 Pakistan inland earthquake. Geophys J Int 199:752–766. https://doi.org/10.1093/gji/ggu297

    Article  Google Scholar 

  • Heidarzadeh M, Pirooz MD, Zaker NH, Yalciner AC, Mokhtari M, Esmaeily A (2008) Historical tsunami in the Makran Subduction zone off the southern coasts of Iran and Pakistan and results of numerical modeling. Ocean Eng 35:774–786

    Article  Google Scholar 

  • Heidarzadeh M, Pirooz MD, Zaker NH (2009a) Modeling the near-field effects of the worst-case tsunami in the Makran subduction zone. Ocean Eng 36:368–376

    Article  Google Scholar 

  • Heidarzadeh M, Pirooz MD, Zaker NH, Yalciner AC (2009b) Preliminary estimation of the tsunami hazards associated with the Makran subduction zone at the northwestern Indian Ocean. Nat Hazards 48:229–243

    Article  Google Scholar 

  • Hoffmann G, Reicherter K (2014) Reconstructing Anthropocene extreme flood events by using litter deposits. Glob Planet Chang 122:23–28. https://doi.org/10.1016/j.gloplacha.2014.07.012

    Article  Google Scholar 

  • Hoffmann G, Reicherter K, Wiatr T, Grützner C, Rausch T (2013a) Block and boulder accumulations along the coastline between fins and Sur (Sultanate of Oman): tsunamigenic remains? Nat Hazards 65:851–873

    Article  Google Scholar 

  • Hoffmann G, Rupprechter M, Balushi NA, Grützner C, Reicherter K (2013b) The impact of the 1945 Makran tsunami along the coastlines of the Arabian Sea (Northern Indian Ocean) - a review. Z Geomorphol 57:257–277

    Article  Google Scholar 

  • Hoffmann G, Al-Yahyai S, Naeem G, Kociok M, Grützner C (2014) An Indian Ocean tsunami triggered remotely by an onshore earthquake in Balochistan, Pakistan. Geology 42:883–886

    Article  Google Scholar 

  • Hoffmann G, Grützner C, Reicherter K, Preusser F (2015) Geo-archaeological evidence for a Holocene extreme flooding event within the Arabian Sea (Ras al Hadd, Oman). Quat Sci Rev 113:123–133

    Article  Google Scholar 

  • Hoffmeister D, Ntageretzis K, Aasen H, Curdt C, Hadler H, Willershäuser T, Bareth G, Brückner H, Vött A (2014) 3D model-based estimations of volume and mass of high-energy dislocated boulders in coastal areas of Greece by terrestrial laser scanning. Zeitschrift für Geomorphologie, Supplementary Issues 58:115–135. https://doi.org/10.1127/0372-8854/2013/s-00126

    Article  Google Scholar 

  • Jordan BR (2008) Tsunamis of the Arabian peninsula a guide of historic events. Sci Tsunami Hazards 27:31

    Google Scholar 

  • Kakar DM, Naeem G, Usman A, Hasan H, Lohdi HA, Srinivasalu S, Andrade V, Rajendran CP, Beni AN, Hamzeh MA (2014) Elders recall an earlier tsunami on Indian Ocean shores. Eos, Transactions American Geophysical Union 95:485–486

    Article  Google Scholar 

  • Kazhdan M, Hoppe H (2013) Screened Poisson surface reconstruction. ACM Trans Graph 32:29. https://doi.org/10.1145/2487228.2487237

    Article  Google Scholar 

  • Kázmér M, Taborosi D (2012) Bioerosion on the small scale–examples from the tropical and subtropical littoral. Hantkeniana 7:37–94

    Google Scholar 

  • Kelly CS, Green AN, Cooper JAG, Wiles E (2014) Beachrock facies variability and sea level implications: a preliminary study. J Coast Res 70:736–742

    Article  Google Scholar 

  • Kortekaas S, Dawson AG (2007) Distinguishing tsunami and storm deposits: an example from Martinhal, SW Portugal. Sediment Geol 200:208–221

    Article  Google Scholar 

  • Koster B, Hoffmann G, Grützner C, Reicherter K (2014) Ground penetrating radar facies of inferred tsunami deposits on the shores of the Arabian Sea (northern Indian Ocean). Mar Geol 351:13–24

    Article  Google Scholar 

  • Kusky T, Robinson C, El-Baz F (2005) Tertiary–quaternary faulting and uplift in the northern Oman Hajar Mountains. J Geol Soc Lond 162:871–888. https://doi.org/10.1144/0016-764904-122

    Article  Google Scholar 

  • Lau AA, Terry JP, Switzer AD, Pile J (2015) Advantages of beachrock slabs for interpreting high-energy wave transport: evidence from Ludao Island in South-Eastern Taiwan. Geomorphology 228:263–274

    Article  Google Scholar 

  • Lichti DD (2005) Spectral filtering and classification of terrestrial laser scanner point clouds. Photogramm Rec 20:218–240. https://doi.org/10.1111/j.1477-9730.2005.00321.x

    Article  Google Scholar 

  • Lindauer S, Marali S, Schöne BR, Uerpmann H-P, Kromer B, Hinderer M (2017) Investigating the local reservoir age and stable isotopes of shells from Southeast Arabia. Radiocarbon 59:355–372

    Article  Google Scholar 

  • Luque L, Lario J, Zazo C, Goy JL, Dabrio CJ, Silva PG (2001) Tsunami deposits as paleoseismic indicators: examples from the Spanish coast. Acta Geol Hisp 36:197–211

    Google Scholar 

  • Macintosh A (2013) Coastal climate hazards and urban planning: how planning responses can lead to maladaptation. Mitig Adapt Strateg Glob Chang 18:1035–1055

    Article  Google Scholar 

  • Mastronuzzi G, Pignatelli C (2011) Determination of tsunami inundation model using terrestrial laser scanner techniques. In: The Tsunami Threat-Research and Technology. InTech

  • Mattern F, Moraetis D, Abbasi I, Al Shukaili B, Scharf A, Claereboudt M, Looker E, Al Haddabi N, Pracejus B (2018) Coastal dynamics of uplifted and emerged late Pleistocene near-shore coral patch reefs at fins (eastern coastal Oman, gulf of Oman). J Afr Earth Sci 138:192–200

    Article  Google Scholar 

  • Mauz B, Vacchi M, Green A, Hoffmann G, Cooper A (2015) Beachrock: a tool for reconstructing relative sea level in the far-field. Mar Geol 362:1–16. https://doi.org/10.1016/j.margeo.2015.01.009

    Article  Google Scholar 

  • May SM, Engel M, Brill D, Cuadra C, Lagmay AMF, Santiago J, Suarez JK, Reyes M, Brückner H (2015) Block and boulder transport in Eastern Samar (Philippines) during Supertyphoon Haiyan. Earth Surf Dyn 3:543–558. https://doi.org/10.5194/esurf-3-543-2015

    Article  Google Scholar 

  • McGranahan G, Balk D, Anderson B (2016) The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ Urban 19:17–37. https://doi.org/10.1177/0956247807076960

    Article  Google Scholar 

  • Nott J (1997) Extremely high-energy wave deposits inside the great barrier reef, Australia: determining the cause—tsunami or tropical cyclone. Mar Geol 141:193–207

    Article  Google Scholar 

  • Nott J (2003) Tsunami or storm waves?: determining the origin of a spectacular field of wave emplaced boulders using numerical storm surge and wave models and hydrodynamic transport equations. J Coast Res:348–356

  • Oetjen J, Engel M, Brückner H, Pudasaini SP, Schüttrumpf H (2017) Enhanced field observations based physical and numerical modeling of tsunami induced boulder transport: phase 1: physical experiments. In Proceedings of the 35th conference on coastal engineering, Antalya, Turkey

  • Okal EA, Fritz HM, Raad PE, Synolakis C, Al-Shijbi Y, Al-Saifi M (2006) Oman field survey after the December 2004 Indian Ocean tsunami. Earthquake Spectra 22:203–218

    Article  Google Scholar 

  • Page WD, Alt JN, Cluff LS, Plafker G (1979) Evidence for the recurrence of large-magnitude earthquakes along the Makran coast of Iran and Pakistan. Tectonophysics 52:533–547

    Article  Google Scholar 

  • Pilarczyk JE, Reinhardt EG (2012) Testing foraminiferal taphonomy as a tsunami indicator in a shallow arid system lagoon: Sur, Sultanate of Oman. Mar Geol 295:128–136

    Article  Google Scholar 

  • Prizomwala SP, Gandhi D, Ukey VM, Bhatt N, Rastogi BK (2015) Coastal boulders as evidences of high-energy marine events from Diu Island, west coast of India: storm or palaeotsunami? Nat Hazards 75:1187–1203

    Article  Google Scholar 

  • Ramírez-Herrera M-T, Lagos M, Hutchinson I, Kostoglodov V, Machain ML, Caballero M, Goguitchaichvili A, Aguilar B, Chagué-Goff C, Goff J (2012) Extreme wave deposits on the Pacific coast of Mexico: tsunamis or storms?—a multi-proxy approach. Geomorphology 139:360–371

    Article  Google Scholar 

  • Rastogi BK, Jaiswal RK (2006) A catalog of tsunamis in the Indian Ocean. Sci Tsunami Hazards: 128–143

  • Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Cheng H, Edwards RL, Friedrich M (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887

    Article  Google Scholar 

  • Scheffers A, Kelletat D (2003) Sedimentologic and geomorphologic tsunami imprints worldwide—a review. Earth Sci Rev 63:83–92

    Article  Google Scholar 

  • Schneider B, Hoffmann G, Reicherter K (2016) Scenario-based tsunami risk assessment using a static flooding approach and high-resolution digital elevation data: an example from Muscat in Oman. Glob Planet Chang 139:183–194. https://doi.org/10.1016/j.gloplacha.2016.02.005

    Article  Google Scholar 

  • Small C, Nicholls RJ (2003) A global analysis of human settlement in coastal zones. J Coast Res:584–599

  • Smith GL, McNeill LC, Wang K, He J, Henstock TJ (2013) Thermal structure and megathrust seismogenic potential of the Makran subduction zone. Geophys Res Lett 40:1528–1533

    Article  Google Scholar 

  • Southon J, Kashgarian M, Fontugne M, Metivier B, Yim WWS (2002) Marine reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon 44:167–180

    Article  Google Scholar 

  • Switzer AD, Burston JM (2010) Competing mechanisms for boulder deposition on the southeast Australian coast. Geomorphology 114:42–54. https://doi.org/10.1016/j.geomorph.2009.02.009

    Article  Google Scholar 

  • Telling J, Lyda A, Hartzell P, Glennie C (2017) Review of earth science research using terrestrial laser scanning. Earth Sci Rev 169:35–68. https://doi.org/10.1016/j.earscirev.2017.04.007

    Article  Google Scholar 

  • UNESCO/IOC (2017) Intergovernmental Oceanographic Commission Sea-Level Station Monitoring Facility: Sealevel at Quriyat Station. Available from www.ioc-sealevelmonitoring.org/station.php?code=qura. Accessed 31 Aug 2017

  • von Rad U, Schaaf M, Michels KH, Schulz H, Berger WH, Sirocko F (1999) A 5000-yr record of climate change in varved sediments from the oxygen minimum zone off Pakistan, northeastern Arabian Sea. Quat Res 51:39–53

    Article  Google Scholar 

  • Weiss R, Fritz HM, Wünnemann K (2009) Hybrid modeling of the mega-tsunami runup in Lituya Bay after half a century. Geophys Res Lett 36

  • Williams DM, Hall AM (2004) Cliff-top megaclast deposits of Ireland, a record of extreme waves in the North Atlantic—storms or tsunamis? Mar Geol 206:101–117

    Article  Google Scholar 

  • Wyns R, Béchennec F, Le Métour J, Roger J (1991) Geological map, scale 1:100 000, sheet NF40–88 Tiwi. Ministry of Petroleum and Minerals - Directorate General of Minerals, Sultanate of Oman

  • Yuan Y, Kusky TM, Rajendran S (2016) Tertiary and quaternary marine terraces and planation surfaces of northern Oman: interaction of flexural bulge migration associated with the Arabian-Eurasian collision and eustatic sea level changes. J Earth Sci 27:955–970. https://doi.org/10.1007/s12583-015-0656-2

    Article  Google Scholar 

Download references

Acknowledgements

Financial support by The Research Council Oman (TRC-grant ORG GUtech EBR 10 013; ORG-EBR-10-006) is gratefully acknowledged. The study was also funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - HO 2550/11-1. The study is a contribution to the IGCP Project 639 “Sea Level Change - From Minutes to Millennia”. We would like to express gratitude to Philipp Marr and Marcus Rudolf for helpful and valuable comments in preparation of this work and Jacques Palami and Meriam Otarra for their English reviewing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bastian Schneider.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, B., Hoffmann, G., Falkenroth, M. et al. Tsunami and storm sediments in Oman: Characterizing extreme wave deposits using terrestrial laser scanning. J Coast Conserv 23, 801–815 (2019). https://doi.org/10.1007/s11852-018-0663-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11852-018-0663-4

Keywords

Navigation