Advertisement

Journal of Coastal Conservation

, Volume 22, Issue 2, pp 443–451 | Cite as

Rapid losses of intertidal salt marshes due to global change in the Gironde estuary (France) and conservation implications for marshland passerines

  • Raphaël Musseau
  • Léa Boutault
  • Sonia Beslic
Article

Abstract

We analysed coastline movements between 2000 and 2016 along the 24.5 km of the mesohaline region of the North bank of the Gironde estuary (France). This sector is identified as hosting the largest expanse of salt marshes of the estuary and as an important breeding and stopover site for different marshland passerines of conservation concern. Our results from the study area reveal an average shore retreat of 14.74 ± 0.50 m over the period, corresponding to a loss of 49.96 ha of intertidal wetlands (i.e. 2.04 ha per kilometer of coastline) and reaching on average of more than 30 m for 42% of the coastline. This erosion dynamic, explained by a significant perturbation of the estuary’s hydro-sedimentary dynamic (due to decreases in freshwater discharges and relative sea level rise) highlights the rapid disruption that can occur in estuarine eco-complexes in response to global change. Given the impacts that estuarine intertidal wetland losses have on carrying capacity for marshland passerines, experimental management approaches are being tested in the study area to compensate for losses already observed and to anticipate those expected. These approaches reveal in particular that partial reconnection of agricultural polders to tide influences with a regulation system for water ingress may allow interesting trade-off between maintaining polders with agricultural activities such as grazing and conservation plans for vegetation of intertidal salt marshes exploitable by marshland passerines.

Keywords

Birds Climate change Coastal erosion DSAS Intertidal wetlands Sea level rise 

Notes

Acknowledgements

This study was achieved thanks to financial support from the Charente-Maritime Departmental Council, the Adour-Garonne Water Agency, the French Ministry of Ecology and Sustainable Development (DREAL Poitou-Charentes and Nouvelle Aquitaine) and the French Agency for Civic Service. We particularly thank Isabelle Delacourte (LittoMatique) for her help during this work. We are grateful to the French Coastal and Lake Shore Conservation Authority and the Poitou-Charentes’ Conservatory of Natural Areas for their help during schemes we initiated to document the ecological interests of management solutions developed to reconnect inshore coastal areas to tide influences. Finally, we thank the people who assisted us during the different field works presented in this study, Greg McIvor for proofreading this paper and the anonymous reviewers who provided valuable comments that helped us to improve our work.

References

  1. Baird D, Evans PR, Milne H, Pienkowski MW (1985) Utilization by shorebirds of benthic invertebrate production in intertidal areas. Oceanogr Mar Biol 23:575–597Google Scholar
  2. Beck MW et al (2001) The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates: a better understanding of the habitats that serve as nurseries for marine species and the factors that create site-specific variability in nursery quality will improve conservation and management of these areas. Bioscience 51:633–641CrossRefGoogle Scholar
  3. Blankespoor B, Dasgupta S, Laplante B (2014) Sea-level rise and coastal wetlands. Ambio 43:996–1005CrossRefGoogle Scholar
  4. Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, Almond REA, Baillie JEM, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, Davidson NC, Dentener F, Foster M, Galli A, Galloway JN, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque JF, Leverington F, Loh J, McGeoch MA, McRae L, Minasyan A, Morcillo MH, Oldfield TEE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrrell TD, Vie JC, Watson R (2010) Global biodiversity: indicators of recent declines. Science 328(5982):1164–1168.  https://doi.org/10.1126/science.1187512 CrossRefGoogle Scholar
  5. Canty A, Ripley B (2017) Boot: Bootstrap R (S-Plus) Functions. R package version 1.3-20. https://cran.r-project.org/web/packages/boot/citation.html
  6. Costanza RR et al (1997) The value of the world’s ecosystem services and natural capital. Nature 387(6630):253–260.  https://doi.org/10.1038/387253a0 CrossRefGoogle Scholar
  7. Craft C, Clough J, Ehman J, Joye S, Park R, Pennings S, Guo H, Machmuller M (2009) Forecasting the effects of accelerated sea level rise on tidal marsh ecosystem services. Front Ecol Environ 7(2):73–78.  https://doi.org/10.1890/070219 CrossRefGoogle Scholar
  8. Crosby SC, Sax DF, Palmer ME, Booth HS, Deegan LA, Bertness MD, Leslie HM (2016) Salt marsh persistence is threatened by predicted sea-level rise. Estuar Coast Shelf Sci 181:93–99.  https://doi.org/10.1016/j.ecss.2016.08.018 CrossRefGoogle Scholar
  9. Davison AC, Hinkley DV (1997) Bootstrap methods and their applications. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9780511802843 CrossRefGoogle Scholar
  10. DREAL Midi-Pyrénées (2012) Note d'enjeux préalable aux travaux des groupes sur l'adaptation aux changements climatiques dans les Pyrénées, pp 7Google Scholar
  11. Eaucéa (2008) Evaluation des impacts du changement climatique sur l’estuaire de la Gironde et prospective a moyen terme, phase 1: analyse des enjeux liés à l’eau, pp 120Google Scholar
  12. Edgar GJ, Barrett NS, Graddon DJ, Last PR (2000) The conservation significance of estuaries: a classification of Tasmanian estuaries using ecological, physical and demographic attributes as a case study. Biol Conserv 92(3):383–397.  https://doi.org/10.1016/S0006-3207(99)00111-1 CrossRefGoogle Scholar
  13. Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7(1):1–26.  https://doi.org/10.1214/aos/1176344552 CrossRefGoogle Scholar
  14. Efron B (1987) Better bootstrap confidence intervals. J Am Stat Assoc 82(397):171–185.  https://doi.org/10.1080/01621459.1987.10478410 CrossRefGoogle Scholar
  15. Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. In: Monographs on statistics and applied probability (n°57). Chapman and Hall/CRC Press, London, pp 456Google Scholar
  16. Ehrlich PR (1988) The loss of diversity: causes and consequences. In: Wilson EO, Peter FM (eds) Biodiversity. National Academies Press, Washington, DC, pp 21–27Google Scholar
  17. Foucher J, Dugué H, Ozarowska A, Wojczulanis-Jakubas K, Heinrich F, Lefebvre M, Archer E (2011) Bilan et analyse des données de la station de baguage de Donges Est pour l’année 2011. ACROLA – Association pour la Connaissance et la Recherche Ornithologique Loire et AtlantiqueGoogle Scholar
  18. Gerdol V, Hughes RG (1993) Effect of the amphipod Corophium volutator on the colonisation of mud by the halophyte Salicornia europaea. Mar Ecol Prog Ser 97:61–69.  https://doi.org/10.3354/meps097061 CrossRefGoogle Scholar
  19. Goeldner-Gianella L (2007a) Perceptions and attitudes towards de-polderisation in Europe: a comparison of five opinion surveys. J Coast Res 23:1218–1230CrossRefGoogle Scholar
  20. Goeldner-Gianella L (2007b) Dépoldériser en Europe occidentale - De-polderizing in Western Europe. Annales de géographie, 2007/4 (n° 656), pp 339–360Google Scholar
  21. Gonin J, Mercier F (2016) Etude de la migration postnuptiale du Phragmite aquatique Acrocephalus paludicola sur les RNN de la Baie de l’Aiguillon et de la Casse de la Belle Henriette. LPO Charente-Maritime, RochefortGoogle Scholar
  22. Greenberg R, Maldonado JE, Droege S, McDonald MV (2006) Tidal marshes: a global perspective on the evolution and conservation of their terrestrial vertebrates. Bioscience 56(8):675–685.Google Scholar
  23. Hérault T, Collet H (2010) Dépoldérisation, la reconquête du fleuve sur l'ancien polder de Mortagne-sur-Gironde. Le Courrier de la. Nature 255:26–32Google Scholar
  24. Hinrichsen D (1998) Coastal waters of the world: trends, threats, and strategies. Island Press, Washington, DCGoogle Scholar
  25. Hughes RG (2004) Climate change and loss of saltmarshes: consequences for birds. Ibis 146:21–28.  https://doi.org/10.1111/j.1474-919X.2004.00324.x CrossRefGoogle Scholar
  26. Jiguet F, Chiron F, Dehorter O, Dugué H, Provost P, Musseau R, Guyot G, Latraube F, Fontanilles P, Séchet E, Laignel J, Gruwier X, Le Névé A (2011) How many aquatic warblers do stop in France during the autumn migration? Acta Ornithol 46(2):135–142.  https://doi.org/10.3161/000164511X625900 CrossRefGoogle Scholar
  27. Kennish MJ (2002) Environmental threats and environmental future of estuaries. Environ Conserv 29:78–107CrossRefGoogle Scholar
  28. Kirwan ML, Temmerman S, Skeehan EE, Guntenspergen GR, Fagherazzi S (2016) Overestimation of marsh vulnerability to sea level rise. Nat Clim Chang 6(3):253–260.  https://doi.org/10.1038/nclimate2909 CrossRefGoogle Scholar
  29. Le Treut H (2013) Les impacts du changement climatique en Aquitaine: un état des lieux scientifique. Presses Universitaires de Bordeaux, LGPA-Editions, Pessac, p 365Google Scholar
  30. Levrault F, Brisson N, Pieri P and Bosc A (2012) Changement climatique en zone Sud-Ouest: aperçu des impacts agricoles et forestiers. In: Brisson N, Levrault F (eds) Changement climatique, agriculture et forêt en France: simulations d'impacts sur les principales espèces – Le Livre Vert du projet CLIMATOR (2007–2010). INRA, Agence Nationale de la Recherche, ADEME. pp 336Google Scholar
  31. Marshall RM, Reinert SE (1990) Breeding ecology of seaside sparrows in a Massachusetts salt marsh. Wilson Bull 102:501–513Google Scholar
  32. McLusky DS, Elliott M (2004) The estuarine ecosystem: ecology, threats and management. 3rd ed. Oxford University Press, Oxford.  https://doi.org/10.1093/acprof:oso/9780198525080.001.0001 CrossRefGoogle Scholar
  33. Moulton DW, Dahl TE, Dall DM (1997) Texas coastal wetlands: status and trends, mid-1950s to early 1990s. U. S. Department of the Interior, Fish and Wildlife Service, Albuquerque, p 32Google Scholar
  34. Musseau R, Beslic S (2016) Définition des potentialités des espaces agricoles arrière-littoraux pour la compensation des pertes d’habitats intertidaux inhérentes aux changements globaux. Cas des prairies poldérisées reconnectées aux dynamiques tidales par échanges d’eau régulés et de l’avifaune, résultats année 2016. BioSphère Environnement, pp 11Google Scholar
  35. Musseau R, Beslic S (2018) High densities of the French coastal endemic Bluethroat (Cyanecula svecica namnetum) revealed in intertidal reed beds and conservation perspectives towards sea level rise. Revue d’Ecologie (Terre et Vie) vol 73Google Scholar
  36. Musseau R, Herrmann V, Kerbiriou C, Bénard S, Hérault T, Kerbiriou E, Jiguet F (2014) Ecology of aquatic warblers Acrocephalus paludicola in a fall stopover area on the Atlantic coast of France. Acta Ornithol 49(1):93–105.  https://doi.org/10.3161/000164514X682922 CrossRefGoogle Scholar
  37. Musseau R, Beslic S, Kerbiriou C (2017) Importance of intertidal wetlands for the French coastal endemic Bluethroat (Cyanecula svecica namnetum) and conservation implications in the context of global changes. Ardeola 64:325–345CrossRefGoogle Scholar
  38. Nicholls RJ et al (2007) Coastal systems and low lying areas. In: Parry ML et al. (ed) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 315–356Google Scholar
  39. Pereira HM, Leadley PW, Proenca V, Alkemade R, Scharlemann JPW, Fernandez-Manjarres JF, Araujo MB, Balvanera P, Biggs R, Cheung WWL, Chini L, Cooper HD, Gilman EL, Guenette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues P, Scholes RJ, Sumaila UR, Walpole M (2010) Scenarios for global biodiversity in the 21st century. Science 330(6010):1496–1501.  https://doi.org/10.1126/science.1196624 CrossRefGoogle Scholar
  40. Prater AJ (1981) Estuary birds of Britain and Ireland. Poyser, BerkhampsteadGoogle Scholar
  41. Preacher KJ, Selig JP (2012) Advantages of Monte Carlo confidence intervals for indirect effects. Commun Methods Meas 6(2):77–98.  https://doi.org/10.1080/19312458.2012.679848 CrossRefGoogle Scholar
  42. Provost P, Kerbiriou C, Jiguet F (2010) Foraging range and habitat use by aquatic warblers Acrocephalus paludicola during a fall migration stopover. Acta Ornithol 45:175–180CrossRefGoogle Scholar
  43. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  44. Rands MRW, Adams WM, Bennun L, Butchart SHM, Clements A, Coomes D, Entwistle A, Hodge I, Kapos V, Scharlemann JPW, Sutherland WJ, Vira B (2010) Biodiversity conservation: challenges beyond 2010. Science 329(5997):1298–1303.  https://doi.org/10.1126/science.1189138 CrossRefGoogle Scholar
  45. Rilo A, Freire P, Guerreiro M, Fortunato AB, Taborda R (2013) Estuarine margins vulnerability to floods for different sea level rise and human occupation scenarios. J Coast Res 65:820–825.  https://doi.org/10.2112/SI65-139.1 CrossRefGoogle Scholar
  46. Rince Y (1983) Hydrologie et planctonologie de l'estuaire de la Loire. Rapport CSEEL 2, pp 1–53Google Scholar
  47. Sottolichio A, Hanquiez V, Perinotto H, Sabouraud L, Weber O (2013) Evaluation of the recent morphological evolution of the Gironde estuary through the use of some preliminary synthetic indicators. J Coast Res Spec Issue 65:1224–1229CrossRefGoogle Scholar
  48. Spohr C (2011) Impacts à long terme du changement climatique sur le littoral métropolitain. Commissariat Général du Développement Durable, collection Etudes et documents, n°55, pp 70Google Scholar
  49. Thieler ER, Himmelstoss EA, Zichichi JL, Ergul A (2009) Digital Shoreline Analysis System (DSAS) version 4.0 - An ArcGIS extension for calculating shoreline change. U.S. Geological Survey Open-File Report 2008–1278Google Scholar
  50. Titus JG (1988) Greenhouse effect, sea level rise, and coastal wetlands. EPA Rep. 230-05-86-013. Environ. Prot. Agency, Washington, DCGoogle Scholar
  51. Traut BH (2005) The role of coastal ecotones: a case study of the salt marsh / upland transition zone in California. J Ecol 93(2):279–290.  https://doi.org/10.1111/j.1365-2745.2005.00969.x CrossRefGoogle Scholar
  52. Watkinson AR, Gill JA, Hulme M (2004) Flying in the face of climate change: a review of climate change, past, present and future. Ibis 146:4–10.  https://doi.org/10.1111/j.1474-919X.2004.00321.x CrossRefGoogle Scholar
  53. Woodward RT, Wui YS (2001) The economic value of wetland services: a meta-analysis. Ecol Econ 37(2):257–270.  https://doi.org/10.1016/S0921-8009(00)00276-7 CrossRefGoogle Scholar
  54. Yates MG, Goss-Custard JD, McGrorty S, Lakhani KH, Le V, Dit Durell SEA, Clarke RT, Rispin WE, Moy I, Yates T, Plant RA, Frost AJ (1993) Sediment characteristics, invertebrate densities and shorebird densities on the inner banks of the Wash. J Appl Ecol 30:599–614Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.BioSphère EnvironnementMortagne-sur-GirondeFrance

Personalised recommendations