Journal of Coastal Conservation

, Volume 21, Issue 1, pp 167–175 | Cite as

Environmental drivers of decadal change of a mangrove forest in the North coast of the Yucatan peninsula, Mexico

  • Rodolfo Rioja-Nieto
  • Eric Barrera-Falcón
  • Edgar Torres-Irineo
  • Gabriela Mendoza-González
  • Angela P. Cuervo-Robayo


Mangrove forests provide important ecosystem services, but are under constant pressure from natural, anthropogenic, and climate change related disturbances. Environmental drivers on mangrove change at large spatial scales, other than sea level rise, are not well understood. In here, we use spatially explicit methods to identify the main environmental drivers of mangrove coverage change over a decade in the landscape of the North coast of the Yucatan peninsula, Mexico. A post-supervised classification approach on seven SPOT 5 multispectral satellite images was used to construct thematic maps of mangrove coverage between 2004 and 2014. A linear regression model between the thematic maps was performed to estimate the mangrove coverage change rate per pixel. Climate surfaces for annual maximum, minimum and mean temperature, and annual mean and cumulative precipitation for the region were calculated for the period 1980–2009 using data obtained from the National Meteorological Service. The effect of environmental variables on mangrove coverage change rates was assessed with a boosted generalized additive model (boosted GAM). The lowest and highest overall accuracy obtained for the time series thematic maps were 87.14% (Kappa = 0.78), and 97.5% (Kappa = 0.95), respectively. The most influential environmental variables on mangrove coverage change were annual cumulative precipitation (21%), and annual maximum temperature (9%). Current climate change scenarios for the region predict an increase in temperature and a decrease in precipitation, intensifying environmental stress on this ecosystem. Therefore, adequate management strategies are fundamental to help maintain the mangrove forest under changing environmental conditions.


Environmental drivers Mangrove coverage change Coastal landscape GIS and remote sensing 



The grant from the National Council for Science and Technology (SEP-CONACyT) No. 153599 provided funding for this research. Satellite images were provided by the New Generation Receiving Station Mexico (ERMEX NG).


  1. Aburto-Oropeza O, Ezcurra E, Danemann G, Valdez V, Murray J (2008) Mangroves in the Gulf of California increase fishery yields. Proc Natl Acad Sci U S A 105:10456–10459CrossRefGoogle Scholar
  2. Alongi DM (2009) The energetics of mangrove forests. Springer Science and Business Media B.V, New YorkGoogle Scholar
  3. Andrews TJ, Muller GJ (1985) Photosynthesis gas exchange of the mangrove Rhizopora stylosa Griff in its natural environment. Oecologia 65:449–445CrossRefGoogle Scholar
  4. Andrews TJ, Clough BF, Muller GJ (1984) Photosynthetic gas exchange and carbon isotope ratios of some mangroves in North Queensland. In: Teas HJ (ed) Physiology and management of mangroves. tasks for vegetation science. W. Junk Publishers, Boston, pp 15–23CrossRefGoogle Scholar
  5. Asbridge E, Lucas R, Accad A, Dowling R (2015) Mangrove response to environmental changes predicted under varying climates: case studies from Australia. Curr Forest Rep 1:178–194CrossRefGoogle Scholar
  6. Ashraf S, Grabyn L, Hicks BJ (2012) Image data fusion for the remote sensing of freshwater environments. Appl Geogr 32:619–628CrossRefGoogle Scholar
  7. Ball MC (1988) Ecophysiology of mangroves. Trees, Struct Func 2:129–142CrossRefGoogle Scholar
  8. Barrera-Falcón E (2016) Distribución espacio-temporal de la cobertura del bosque de manglar en la Reserva Estatal El Palmar y área adyacente sin esquema de protección Universidad Nacional Autónoma de MéxicoGoogle Scholar
  9. Berlanga-Robles CA, Ruiz-Luna A, Bocco G, Vekerdy Z (2011) Spatial analysis of the impact of shrimp culture on the coastal wetlands on the Northern coast of Sinaloa, Mexico. Ocean Coast Manag 54:535–543CrossRefGoogle Scholar
  10. Castañeda-Moya E, Twilley RR, Rivera-Monroy VH (2013) Allocation of biomass and net primary productivity of mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. For Ecol Manag 307:226–241CrossRefGoogle Scholar
  11. Cavanaugh K, Kellner JR, Forde AJ, Gruner DS, Parker JD, Rodriguez W, Feller IC (2014) Poleward expansion of mangroves is a response to decreased frequency of extreme cold events. PNAS 111:723–727CrossRefGoogle Scholar
  12. Chapman VJ (1977) Mangrove vegetation. Cramer-Verlag, BerlinGoogle Scholar
  13. Clarke PJ (2004) Effects of experimental canopy gaps on mangrove recruitment: lack of habitat partitioning may explain stand dominance. J Ecol 92:203–213CrossRefGoogle Scholar
  14. Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37:35–46CrossRefGoogle Scholar
  15. Coppin P, Jonckheere I, Nackaerts K, Muys B (2004) Digital change detection methods in ecosystem monitoring: a review. Int J Remote Sens 25:1565–1596CrossRefGoogle Scholar
  16. Crase B, Liedloff A, Vesk PA, Burgman MA, Wintle BA (2013) Hydroperiod is the main driver of the spatial pattern of dominance in mangrove communities. Glob Ecol Biogeogr 22:806–817CrossRefGoogle Scholar
  17. Cuervo-Robayo A, Téllez-Valdés O, Gómez-Albores M, Venegas-Barrera C, Manjarrez J, Martínez-Meyer E (2013) An update of high resolution monthly climate surfaces for Mexico. Int J Climatol 34:2427–2437CrossRefGoogle Scholar
  18. Elgene EO (1981) Microclimate and plant forms: an introduction to predictive modeling in phytogeography vol 1. tasks for vegetation science. Springer Netherlands, NetherlandsGoogle Scholar
  19. Ellison AM (2000) How south pacific mangroves may respond to predicted climate change and sea level rise. In: Fillespie A, Burns W (eds) Climate change in the South Pacific: impacts and responses in Australia, New Zealand, and Small Islands States. Kluwer, Dordrecht, pp 289–301CrossRefGoogle Scholar
  20. Enriquez C, Mariño-Tapia I, Herrera-Silveira J (2010) Dispersion in the Yucatan coastal zone: Implications for red tide events. Cont Shelf Res 30:127–137CrossRefGoogle Scholar
  21. ERDAS (2014) Imagine ProfessionalGoogle Scholar
  22. Field CD (2000) Mangroves. In: Sheppard C (ed) Seas at the millenium an environmental evaluation, vol 3. Elsevier Science Ltd, Netherlands, pp 17–32Google Scholar
  23. Fitzpatrick MC, Sanders NJ, Ferrier S, Longino JT, Weiser MD, Dunn R (2011) Forecasting the future of biodiversity: a test of single- and multi-species models for ants in North America. Ecography 34:836–847CrossRefGoogle Scholar
  24. Flores-de-Santiago F, Kovacs JM, Flores-Verdugo F (2013) The influence of seasonality in estimating mangrove leaf chlorophyll-a content from hyperspectral data. Wetl Ecol Manag 21:193–207CrossRefGoogle Scholar
  25. Franklin J, Davis F, Ikergarmi M, Syphard A, Flint F, Fint A, Hannah L (2013) Modeling plant species distributions under future climates: how fine scale do climate projections need to be? Glob Chang Biol 19:473–483CrossRefGoogle Scholar
  26. Garcia E (2004) Modificaciones al sistema de clasificación climática de Köppen. Comisión Nacional para el Estudio de la Biodiversidad, MéxicoGoogle Scholar
  27. Giri C et al (2011) Status and distribution of mangrove forest of the world using earth observation satellite data. Glob Ecol Biogeogr 20:154–159CrossRefGoogle Scholar
  28. Godoy M, De Lacerda LD (2015) Mangroves response to climate change: a review of recent findings on mangrove extension and distribution. An Acad Bras Cienc 87:651–667CrossRefGoogle Scholar
  29. Green EP, Mumby PJ, Edwards AJ, Clark CD (2000) Remote sensing handbook for tropical coastal management. United Nations Educational, Scientific and Cultural Organization, ParisGoogle Scholar
  30. Herrera-Silveira JA (1999) Overview and characterization of the hydrology and primary producer communities of selected coastal lagoons of Yucatán, México. Aquat Ecosyst Health Manag 1:353–372Google Scholar
  31. Hofner B, Mayr A, Robinzonov N, Schmid M (2014) Model-based boosting in R: a hands-on tutorial using the R package mboost. Comput Stat 29:3–35CrossRefGoogle Scholar
  32. Hothorn T, Buehlmann P, Kneib T, Schmid M, Hofner B, Sobotka F, Scheipl F (2016) mboost: Model-Based Boosting. Accessed 6th of June 2016
  33. Hutchings P, Saenger P (1987) Ecology of mangroves. St. LuciaGoogle Scholar
  34. Hutchinson MF (2006) Anusplin version 4.36 user guide. Centre for Resource and Enviromental Studies, Canberra, AustraliaGoogle Scholar
  35. Karmalkar AV, Bradley RS, Diaz HF (2011) Climate change in Central America and Mexico: regional climate model validation and climate change projections. Clim Dyn 37:605–629CrossRefGoogle Scholar
  36. Kneib T, Müller J, Hothorn T (2008) Spatial smoothing techniques for the assessment of habitat suitability. Environ Ecol Stat 15:343–364CrossRefGoogle Scholar
  37. Krauss KW, Doyle TW, Twilley RR, Rivera-Monroy VH, Sullivan JK (2006) Evaluating the relative contributions of hydroperiod and soil fertility on growth of south Florida mangroves. Hydrobiologia 569:311–324CrossRefGoogle Scholar
  38. Krauss KW, Lovelock CE, McKee KL, López-Hoffman L, Ewe SML, Sousa WP (2008) Environmental drivers in mangrove establishment and early development: a review. Aquat Bot 89:105–127CrossRefGoogle Scholar
  39. Legendre P, Legendre LF (1998) Numerical ecology vol 872. Elsevier, AmsterdamGoogle Scholar
  40. Maloney KO, Schmid M, Weller DE (2012) Applying additive modelling and gradient boosting to assess the effects of watershed and reach characteristics on riverine assemblages: boosted GAMs, stream biota and human stressors. Methods Ecol Evol 3:116–128CrossRefGoogle Scholar
  41. Martinuzzi S, Gould WA, Lugo AE, Medina E (2009) Conversion and recovery of Puerto Rican mangroves: 200 years of change. For Ecol Manag 257:75–84CrossRefGoogle Scholar
  42. Mcleond E et al (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–560CrossRefGoogle Scholar
  43. Mendoza-González G, Martínez ML, Rojas-Soto O, Téllez-Valdés O, Arias-Del Razo I (2016) Priority areas for conservation of beach and dune vegetation of the Mexican Atlantic coast. J Nat Conserv. doi: 10.1016/j.jnc.2016.04.007 Google Scholar
  44. Mitra A (2013) Sensitivity of mangrove ecosystems to changing climate. Springer, IndiaCrossRefGoogle Scholar
  45. Mumby PJ et al (2004) Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427:533–536CrossRefGoogle Scholar
  46. Orellana LR, Espadas MC, Conde AC, Gay GC (2009) Escenarios de cambio climático en la Península de Yucatán. Unidad de Recursos Naturales, CICY, YucatánGoogle Scholar
  47. Osland MJ, Enwright NM, Day RH, Gabler CA, Stagg CL, Grace JB (2016) Beyond just sea-level rise: considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change. Glob Chang Biol 22:1–11CrossRefGoogle Scholar
  48. Pope KO, Rejmankova E, Paris JF, Woodruff R (1997) Detecting seasonal flooding cycles in marshes of the Yucatan Peninsula with SIR-C polarimetric radar imagery. Remote Sens Environ 59:157–166CrossRefGoogle Scholar
  49. Record S, Charney ND, Zakaria RM, Ellison AM (2013) Projecting global mangrove species and community distributions under climate change. Ecosphere 4:34CrossRefGoogle Scholar
  50. Reddy CS, Pasha SV, Jha CS (2016) Spatio-temporal changes associated with natural and anthropogenic factors in wetlands of Great Rann of Kachchh, India. J Coast Conserv 20:145–155CrossRefGoogle Scholar
  51. Richards DR, Friess DA (2016) Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc Natl Acad Sci U S A 113:344–349CrossRefGoogle Scholar
  52. Rioja-Nieto R, Moreno-Ruiz JA, Gómez-Valdéz J (2015) Efecto del manejo de un Área Natural Protegida en el paisaje del bosque de manglar en la Península de Yucatán. Hidrobiológica 25:30–40Google Scholar
  53. Rodríguez-Zúñiga MT et al. (2013) Manglares de México/ Extensión, distribución y monitoreo. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México, D.FGoogle Scholar
  54. Ruiz-Luna A, Acosta-Velázquez J, Berlanga-Robles CA (2008) On the reliability of the data of the extent of mangroves: a case study in Mexico. Ocean Coast Manag 51:342–351CrossRefGoogle Scholar
  55. Saenger P, Moverty J (1985) Vegetative phenology of mangroves along the Queensland coastline. Proc Ecol Soc Austral 13:257–265Google Scholar
  56. Saintilan N, Rogers K (2015) Woody plant encroachment of grasslands: a comparison of terrestrial and wetland settings. New Phytol 205:1062–1070CrossRefGoogle Scholar
  57. Saintilan N, Wilson NC, Kerrylee R, Rajkaran A, Krauss KW (2014) Mangrove expansion and salt marsh decline at mangrove poleward limits. Glob Chang Biol 20:147–157CrossRefGoogle Scholar
  58. Schmid M, Hothorn T (2008) Boosting additive models using component-wise-P-Splines. Comput Stat Data Anal 53:298–311CrossRefGoogle Scholar
  59. Schowengerdt RA (2007) Remote sensing models and methods for image processing, 3rd edn. Elsevier, Inc., USAGoogle Scholar
  60. SEDUMA (2006) Programa de Manejo Reserva Estatal el Palmar. Gobierno del Estado de YucatánGoogle Scholar
  61. Seto KC, Fragkias M (2007) Mangrove conversion and aquaculture development in Vietnam: a remote sensing-based approach for evaluating the Ramsar Convention on Wetlands. Glob Environ Chang 17:486–500CrossRefGoogle Scholar
  62. Siikamäki J, Sanchirico JN, Jardine S (2012) Global economic potential for reducing carbon dioxide emissions from mangrove loss. Proc Natl Acad Sci 109:14369–14376CrossRefGoogle Scholar
  63. Snedaker J (1995) Mangroves and climate change in the Florida and Caribbean region: scenarios and hypotheses. Hidrobiologia 295:43–49CrossRefGoogle Scholar
  64. Stalker JC, Price RM, Rivera-Monroy VH, Herrera-Silveira JA, Morales S, Benitez JA, Alonzo-Parra D (2014) Hydrologic dyamics of a subtropical estuary using geochemical tracers, Celestún, Yucatan, Mexico. Estuar Coasts 37:1376–1387CrossRefGoogle Scholar
  65. Tapia González FU, Herrera-Silveira JA, Aguirre-Macedo ML (2008) Water quality variability and eutrophic trends in karstic tropical coastal lagoons of the Yucatán Peninsula. Estuar Coast Shelf Sci 76:418–430CrossRefGoogle Scholar
  66. Tomilson PB (1986) The botany of mangroves. Cambridge University Press, CambridgeGoogle Scholar
  67. UNESCO (1992) Coastal systems studies and sustainable development. In: UNESCO (ed) Proceedings of the COMAR interregional scientific conference. Paris, pp 21-24Google Scholar
  68. Xu T, Hutchinson M (2013) New developments and applications in the ANUCLIM spatial climatic and bioclimatic modelling package. Environ Model Softw 40:267–279CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.UMDI-Sisal, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoSierra PapacalMéxico
  2. 2.Laboratorio Nacional de Resiliencia CosteraLaboratorios Nacionales CONACYTMéxico CityMexico
  3. 3.Posgrado en Ciencias del Mar y Limnología, UMDI-SisalUniversidad Nacional Autónoma de MéxicoHunucmáMexico
  4. 4.CONACYT – UMDI-Sisal, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoSierra PapacalMéxico
  5. 5.Laboratorio de Análisis Espaciales. Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoMéxico CityMexico
  6. 6.Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO)TlalpanMéxico

Personalised recommendations