Advertisement

Journal of Coastal Conservation

, Volume 21, Issue 1, pp 15–21 | Cite as

Trampling impact on vegetation of embryonic and stabilised sand dunes in Montenegro

  • Urban Šilc
  • Danka Caković
  • Filip Küzmič
  • Danijela Stešević
Article

Abstract

Trampling is one of the human activities that are harmful for plant species and communities of sand dune ecosystems. The aim of this study was to compare the vegetation of embryonic and shifting Ammophila sand dunes with and without fencing to limit trampling. Fenced sand dunes appeared to be richer in species but differences were more prominent in embryonic sand dunes. Some species (Cakile maritima, Pancratium maritimum) were missing on trampled embryonic dunes. The positive impact of trampling exclusion on embryonic sand dunes was indicated by a lowered slope in a Whittaker graph as well as by rarefaction curves that showed higher species richness on the lower slope. Changes in the vegetation of more stabilised shifting Ammophila sand dunes due to trampling are not evident, although species composition is also impoverished. Fencing of parts of sand dunes proved to be an effective measure for vegetation conservation. In addition to physical exclusion of visitors, fences can also have symbolic value for raising public awareness.

Keywords

Habitats directive Conservation Fencing Trampling 

Notes

Acknowledgements

We thank anonymous reviewer for helpful suggestions and comments. Martin Cregeen kindly checked our English. The research was partly financed by Slovenian Research Agency (ARRS) through a research program (P1-0236) and bilateral project (BI-ME/16-17-018).

References

  1. Acosta A, Carranza ML, Izzi CF (2009) Are there habitats that contribute best to plant species diversity in coastal dunes? Biodivers Conserv 18:1087–1098CrossRefGoogle Scholar
  2. Acosta ATR, Jucker T, Prisco I, Santoro R (2013) Passive recovery of Mediterranean coastal dunes following limitations to human trampling. In: Martínez LM, Gallego-Fernández JB, Hesp PA (eds) Restoration of coastal dunes. Springer-Verlag, Berlin Heidelberg, pp. 187–198CrossRefGoogle Scholar
  3. Andersen UV (1995) Resistance of Danish coastal vegetation types to human trampling. Biol Conserv 71:223–230. doi: 10.1016/0006-3207(94)00031-K CrossRefGoogle Scholar
  4. Brown AC, McLachlan A (2002) Sandy shore ecosystems and the threats facing them: some predictions for the year 2025. Environ Conserv 29:62–77. doi: 10.1017/S037689290200005X CrossRefGoogle Scholar
  5. Brunbjerg AK, Jørgensen GP, Nielsen KM, Pedersen ML, Svenning JC, Ejrnæs R (2015) Disturbance in dry coastal dunes in Denmark promotes diversity of plants and arthropods. Biol Conserv 182:243–253CrossRefGoogle Scholar
  6. Burić D, Ducić V, Mihajlović J (2014) The climate of Montenegro: modificators and types, part two. Bull Serbian Geog Soc 9:73–90Google Scholar
  7. Carboni M, Carranza ML, Acosta A (2009) Assessing conservation status on coastal dunes: a multiscale approach. Landsc Urban Plan 91:17–25. doi: 10.1016/j.landurbplan.2008.11.004 CrossRefGoogle Scholar
  8. Ciccarelli D (2014) Mediterranean coastal sand dune vegetation: influence of natural and anthropogenic factors. Environ Manag 54:194–204CrossRefGoogle Scholar
  9. Clarke KR (1993) Non-parametric multivariate analysis of changes in community structure. Aust J Ecol 18:117–143CrossRefGoogle Scholar
  10. Colwell RK, Chao A, Gotelli NJ, Lin SY, Mao CX, Chazdon RL, Longino JT (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J Plant Ecol-Uk 5:3–21. doi: 10.1093/jpe/rtr044 CrossRefGoogle Scholar
  11. Davenport J, Davenport JL (2006) The impact of tourism and personal leisure transport on coastal environments: a review estuarine. Coastal Shelf Sci 67:280–292CrossRefGoogle Scholar
  12. Defeo O et al (2009) Threats to sandy beach ecosystems: a review. Estuar Coast Shelf Sci 81:1–12. doi: 10.1016/j.ecss.2008.09.022 CrossRefGoogle Scholar
  13. Eckrich TM (2000) Factors affecting the application of green chemistry concepts in pharmaceutical R&D: recent case studies. Abstr Pap Am Chem Soc 220:U427–U427Google Scholar
  14. Fenu G, Cogoni D, Ulian T, Bacchetta G (2013) The impact of human trampling on a threatened coastal Mediterranean plant: the case of Anchusa Littorea Moris (Boraginaceae). Flora 208:104–110. doi: 10.1016/j.flora.2013.02.003 CrossRefGoogle Scholar
  15. Garcia-Mora MR, Gellego-Fernandez JB, Garcia-Novo F (1999) Plant functional types in coastal foredunes in relation to environmental stress and disturbance. J Veg Sci 10:27–34CrossRefGoogle Scholar
  16. Glenn-Lewin DC, van der Maarel E (1992) Patterns and processes of vegetation dynamics. In: Glenn-Lewin DC, Peet RK, Veblen TT (eds) Plant succession: theory and prediction. Chapman & Hall, London, pp. 11–59Google Scholar
  17. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391. doi: 10.1046/j.1461-0248.2001.00230.x CrossRefGoogle Scholar
  18. Grafals-Soto R, Nordstrom K (2009) Sand fences in the coastal zone: intended and unintended effects. Environ Manag 44:420–429CrossRefGoogle Scholar
  19. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9Google Scholar
  20. Houston J (2008) Management of Natura 2000 habitats. 2130 *Fixed coastal dunes with herbaceous vegetation ("grey dunes") European CommissionGoogle Scholar
  21. Hsieh TC, Ma KH, Chao A (2013) iNEXT online: interpolation and extrapolation (Version 1.0) http://chao.stat.nthu.edu.tw/blog/software-download/
  22. Hylgaard T, Liddle MJ (1981) The effect of human trampling on a sand dune ecosystem dominated by Empetrum Nigrum. J Appl Ecol 18:559–569CrossRefGoogle Scholar
  23. Kerbiriou C, Leviol I, Jiguet F, Julliard R (2008) The impact of human frequentation on coastal vegetation in a biosphere reserve. J Environ Manag 88:715–728CrossRefGoogle Scholar
  24. Kutiel P, Eden E, Zhelev Y (2000) Effect of experimental trampling and off-road motorcycle traffic on soil and vegetation of stabilized coastal dunes. Isr Environ Conserv 27:14–23CrossRefGoogle Scholar
  25. Labuz T, Grunewald R (2007) Studies on vegetation cover of the Amsterdam youngest dunes of the Swina gate barrier (western polish coast). J Coast Res 23:160–172CrossRefGoogle Scholar
  26. Lemauviel S, Rosé F (2003) Response of three plant communities to trampling in a sand dune system in Brittany (France). Environ Manag 31:227–235CrossRefGoogle Scholar
  27. Liddle MJ (1975) A selective review of the ecological effects of human trampling on natural ecosystems. Biol Conserv 7:17–36CrossRefGoogle Scholar
  28. Magurran A (1988) Measuring biological diversity. Blackwell, OxfordGoogle Scholar
  29. McLachlan A (2001) Coastal beach ecosystems. In: Lewin R (ed) Encyclopedia of biodiversity. Academic Press, New York, pp. 741–751CrossRefGoogle Scholar
  30. McLachlan A, Brown AC (2006) The ecology of sandy shores, 2 edn. Academic Press, New YorkGoogle Scholar
  31. Mijović A (1994) The xerohalophytic sand communities of the Long beech Glasnik Instituta za Botaniku i Botaničke Bašte Univerziteta u Beogradu 28:147–157Google Scholar
  32. Mijović A, Popović Z, Karadžić B, Mijatović M, Perišić S (2006) Distribution of xerohalophytic vegetation along the seaward and landward zone in south-Adriatic sandy bach (Montenegro). Biotechnol & Biotechnol Equip 20:30–35CrossRefGoogle Scholar
  33. Nordstrom KF, Lampe R, Vandemark LM (2000) Reestablishing naturally functioning dunes on developed coasts. Environ Manag 25:37–51. doi: 10.1007/s002679910004 CrossRefGoogle Scholar
  34. Pescott OL, Stewart GB (2014) Assesing the impact of human trampling on vegetation: a systematic review and meta-analysis of experimental evidence. PeerJ 2:e360. doi: 10.7717/peerj.360 CrossRefGoogle Scholar
  35. Petrović D, Karaman M (2009) Important plant areas in Montenegro – IPA Programme. NVO ZNVO Zeelena Gora, PodgoricaGoogle Scholar
  36. Petrović D, Hadžiablahović S, Vuksanović S, Mačić V, Lakušić D (2012) Katalog tipova staništa Crne Gore značajnih za Evropsku uniju. Podgorica-Beograd-ZagrebGoogle Scholar
  37. Puijalon S, Piola F, Bornette G (2008) Abiotic stresses increase plant regeneration ability. Evol Ecol 22:493–506CrossRefGoogle Scholar
  38. Rickard CA, McLachlan A, Kerley GIH (1994) The effects of vechicular and pedestrian traffic on dune vegetation in South Africa. Ocean Coast Manag 23:225–247CrossRefGoogle Scholar
  39. Santoro R, Jucker T, Prisco I, Carboni M, Battisti C, Acosta ATR (2012) Effects of trampling limitation on coastal dune plant communities. Environ Manag 49:534–542. doi: 10.1007/s00267-012-9809-6 CrossRefGoogle Scholar
  40. Scott GAM (1976) The ecology of shingle beach plants. J Ecol 51:517–527CrossRefGoogle Scholar
  41. Seer FK, Irmler U, Schrautzer J (2015) Effects of trampling on beach plants at the Baltic Sea. Folia Geobot 50:303–315CrossRefGoogle Scholar
  42. Šilc U, Dajić Stevanović Z, Ibraliu A, Luković M, Stešević D (2016a) Human impact on sandy beach vegetation along the southeastern Adriatic coast. Biologia 71:865–874. doi: 10.1515/biolog-2016-0111 Google Scholar
  43. Šilc U, Mullaj A, Alegro A, Ibraliu A, Dajić Stevanović Z, Luković M, Stešević D (2016b) Sand dune vegetation along the eastern Adriatic coast. Phytocoenologia. doi: 10.1127/phyto/2016/0079 Google Scholar
  44. StatSoft I (2011) STATISTICA (data analysis software system), version 10.0. www.statsoft.comGoogle Scholar
  45. Tichý L, Chytrý M (2006) Statistical determination of diagnostic species for site groups of unequal size. J Veg Sci 17:809–818CrossRefGoogle Scholar
  46. van der Maarel E (1971) Plant species diversity in relation to management. In: Duffey E, Watt SA (eds) The scientific management of animal and plant communities for conservation. Blackwell, Oxford, pp. 45–64Google Scholar
  47. Walker LR, Wardle DA, Bardgett RD, Clarkson BD (2010) The use of chronosequences in studies of ecological succession and soil development. J Ecol 98:725–736. doi: 10.1111/j.1365-2745.2010.01664.x CrossRefGoogle Scholar
  48. Whittaker RH (1970) Communities and ecosystems. Macmillian, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Urban Šilc
    • 1
    • 2
  • Danka Caković
    • 3
  • Filip Küzmič
    • 1
  • Danijela Stešević
    • 3
  1. 1.ZRC SAZU (Research Centre of the Slovenian Academy of Sciences and Arts)Institute of BiologyLjubljanaSlovenia
  2. 2.BC NakloNakloSlovenia
  3. 3.Faculty of Natural Sciences and Mathematics, Biology departmentUniversity of MontenegroPodgoricaMontenegro

Personalised recommendations