Advertisement

Journal of Coastal Conservation

, Volume 16, Issue 4, pp 555–566 | Cite as

Occurrence and public perception of jellyfish along the German Baltic coastline

  • Sarah Baumann
  • Gerald Schernewski
Article

Abstract

Jellyfish accumulations are often problematic for tourism and fisheries both along European coastlines and overseas. They damage the reputation of several seaside resorts and cause serious economic losses. On the German Baltic coast, jellyfish accumulations are well known, too. Besides population increase due to anthropogenic effects, normal hydrodynamic processes are notable key factors when it comes to jellyfish accumulations. Along German Baltic coastlines, moon jellyfish (Aurelia aurita) occur most frequently but also stinging lion’s mane jellyfish (Cyanea capillata) appear regularly, however not as abundant. The objectives of our study were a) to screen when, where, how many and which jellyfish species occur on German Baltic coasts, b) to find the causes for jellyfish accumulations and c) to evaluate how beach visitors perceive native medusae and whether information can influence their perception. Different methods where combined: systematic jellyfish observations in cooperation with lifeguards, investigations of jellyfish abundance in shallow water zones, and interviews with beach visitors. Our results suggest that jellyfish occurrence along the German Baltic coast correlates with offshore wind or shore-parallel wind, which cause upwelling events. In contrast, there is no evidence that frequency of jellyfish occurrence was dependent on water temperature in summer. In regard to tourism, we found that beach visitors who received information about jellyfish stated to feel significantly less bothered by medusae. Overall, this article addresses different methods to learn more about jellyfish accumulations and it shows information strategies in terms of improved beach management.

Keywords

Aurelia aurita Cyanea capillata Accumulation Coastal upwelling Bathing tourism Beach management 

Notes

Acknowledgements

The authors like to thank S. Kube and I. Krämer (Leibniz-Institute for Baltic Research Warnemünde) as well as G. Graf (University of Rostock, Department of Marine Science) for their comments on the paper and some methodological approach. The work was financially supported by the projects BaltCICA (European Union, Baltic Sea Region Programme), RADOST and IKZM-Oder III (Federal Ministry for Education and Research; 03F0475 and 01LR0807)

References

  1. Atteslander P (2008) Methoden der empirischen Sozialforschung. Schmidt (Erich), BerlinGoogle Scholar
  2. Barz K, Hirche HJ (2006) Abundance, distribution and prey composition of scyphomedusae in the southern North Sea. Mar Biol. doi: 10.1007/s00227-006-0545-4
  3. Barz K, Hinrichsen HH, Hirche HJ (2006) Scyphozoa in the Bornholm Basin (central Baltic Sea)—the role of advection. J Mar Syst 60:167–176CrossRefGoogle Scholar
  4. Baumann S (2010) Quallen an deutschen Ostseeküsten–Auftreten, Wahrnehmung, Konsequenzen. IKZM-Oder Report (59). ISSN 1614–5968Google Scholar
  5. Bortz J, Döring N (2006) Forschungsmethoden und Evaluation für Human- und Sozialwissenschaftler. Springer, BerlinGoogle Scholar
  6. Cargo DC, King DR (1990) Forecasting the abundance of the sea nettle, Chrysaora quinquecirrha in the Chesapeake Bay. Estuar Coast 13:486–491CrossRefGoogle Scholar
  7. Dawson MN (2005) Cyanea capillata is not a cosmopolitan jellyfish: morphological and molecular evidence for C. annaskala and C. rosea (Scyphozoa, Semaeostomeae, Cyaneidae) in southeast Australia. Invert Syst 19:361–370. doi: 10.1071/IS03035 CrossRefGoogle Scholar
  8. Decker MB, Brown CW, Hood RR, Purcell JE, Gross TF, Matanoski J, Owens R (2007) Development of habitat models for predicting the distribution of the scyphomedusa, Chrysaora quinquecirrha in Chesapeake Bay. Mar Ecol Prog Ser 329:99–113CrossRefGoogle Scholar
  9. Dolch T, Schernewski G (2004) Eutrophication by the Odra River: implications for tourism and sustainable development of the coastal zone. The Second International Conference ‘Sustainable Management of Transboundary Waters in Europe’ 21–24 April 2002, Miedzyzdroje, Poland. ISBN 83-87588-04-0Google Scholar
  10. Doyle TK, Houghton JDR, Buckley SM, Hays GC, Davenport J (2007) The broad-scale distribution of five jellyfish species across a temperate coastal environment. Hydrobiologia 579:29–39CrossRefGoogle Scholar
  11. Fahrenberg J, Myrtek M, Pawlik K, Perrez M (2007) Ambulatory assessment–monitoring behavior in daily life settings. A behavioral-scientific challenge for psychology. Eur J Psychol Assess 23:206–213CrossRefGoogle Scholar
  12. Gibbons MJ, Richardson A (2008) Patterns of jellyfish abundance in the North Atlantic. Hydrobiologia 616:51–65CrossRefGoogle Scholar
  13. Graham WM, Pages F, Hamner WM (2001) A physical context for gelatinous zooplankton: a review. Hydrobiologia 451:199–212CrossRefGoogle Scholar
  14. Gröndahl F (1988) A comparative ecological study on the scyphozoans Aurelia aurita, Cyanea capillata and C. lamarckii in the Gullmar Fjord, western Sweden, 1982 to 1986. Mar Biol 97:541–550CrossRefGoogle Scholar
  15. Holst S (2008) Grundlagen der Populationsentwicklung verschiedener Scyphozoa (Cnidaria) der deutschen Bucht. Dissertation. Universität Hamburg. Published at http://www.sub.uni-hamburg.de/opus/volltexte/2008/3635
  16. Holst S, Jarms G (2007) Substrate choice and settlement preferences of planula larvae of five Scyphozoa (Cnidaria) from German Bight, North Sea. Mar Biol 151:863–871. doi: 10.1007/s00227-006-0530-y CrossRefGoogle Scholar
  17. Holst S, Jarms G (2010) Effects of low salinity on settlement and strobilation of scyphozoa (Cnidaria): is the lion’s mane Cyanea capillata (L.) able to reproduce in the brackish Baltic Sea? Hydrobiologia 645:53–68. doi: 10.1007/s10750-010-0214-y CrossRefGoogle Scholar
  18. Horstmann U (1983) Distribution patterns of temperature and water color in the Baltic Sea as recorded in satellite images: indicators for phytoplankton growth. Berichte aus dem Institut für Meereskunde, Kiel 106:147Google Scholar
  19. Houston JR (2008) The economic value of beaches—a 2008 update. Shore Beach 76:22–26Google Scholar
  20. Hunziker M, Egli E, Wallner A (1998) Return of predators: reasons for existence or lack of public acceptance, KORA-Report No. 3, Workshop on Human Dimension in Large Carnivore Conservation, SwitzerlandGoogle Scholar
  21. Jansson BO, Staalvant CE (2001) The Baltic Basin case study towards a sustainable Baltic Europe. Review article. Cont Shelf Res 21:1999–2019CrossRefGoogle Scholar
  22. Kaneda A (2007) Periodicity in the accumulation of gelatinous zooplankton during the summer season in the coastal area of Iyo-Nada, Japan. Limnol Oceanogr 52:707–715CrossRefGoogle Scholar
  23. Kessler V (2009) Information needs of tourists about the Baltic Sea in Mecklenburg-Western Pomerania. In: Schernewski G, Janßen H, Schumacher S (eds) Coastal Change in the southern Baltic Sea Region. Coastline Reports (12), pp. 161–176Google Scholar
  24. Lehmann A, Myrberg K (2008) Upwelling in the Baltic Sea—a review. J Mar Syst 74:3–12CrossRefGoogle Scholar
  25. Leidner R (2004) The European tourism industry: a multi-sector with dynamic markets: structures, developments and importance for Europe’s economy. Report prepared for the enterprise DG (Unit D.3) for the European Commission. ISBN 92-894-7675-3Google Scholar
  26. Lynam CP, Gibbons MJ, Axelsen BE, Sparks CAJ, Coetzee J, Heywood BG, Brierley AS (2006) Jellyfish overtake fish in a heavily fished ecosystem. Curr Biol 16:492–493CrossRefGoogle Scholar
  27. Miglietta MP, Rossi M, Collin R (2008) Hydromedusa blooms and upwelling events in the Bay of Panama, Tropical East Pacific. J Plankton Res 30:783–793CrossRefGoogle Scholar
  28. Möller H (1980a) A summer survey of large zooplankton, particularly Scyphomedusae, in North Sea and Baltic. Meeresforschung 28:61–80Google Scholar
  29. Möller H (1980b) Population dynamics of Aurelia aurita medusae in Kiel Bight, Germany (FRG). Mar Biol 60:123–128CrossRefGoogle Scholar
  30. Möller H (1984a) Reduction of a larval herring population by jellyfish predator. Science 224:621–622CrossRefGoogle Scholar
  31. Möller H (1984b) Daten zur Biologie der Quallen und Jungfische in der Kieler Bucht. Möller, KielGoogle Scholar
  32. Myrberg K, Andrejev O (2003) Main upwelling regions in Baltic Sea—a statistical analysis based on three-dimensional modelling. Boreal Environ Res 8:97–112Google Scholar
  33. Owen J (2006) Jellyfish invasion puts sting on Europe beaches. At http://news.nationalgeographic.com/news/2006/08/060818-jellyfish-spain.html
  34. Parsons TR, Lalli CM (2002) Jellyfish population explosions: revisiting a hypothesis of possible causes. Mer (Paris) 40:111–121Google Scholar
  35. Pauly et al (2009) Jellyfish in ecosystems, online databases and ecosystem models. Hydrobiologia 616:67–85CrossRefGoogle Scholar
  36. Purcell JE (2005) Climate effects on formation of jellyfish and ctenophore blooms: a review. J Mar Biol Assoc UK 85:461–476CrossRefGoogle Scholar
  37. Purcell JE (2009) Extension of methods for jellyfish and ctenophore trophic ecology to large-scale research. Hydrobiologia 616:23–50CrossRefGoogle Scholar
  38. Purcell JE, Malej A, Benović A (1999) Potential links of jellyfish to eutrophication and fisheries. In: Malone TC, Malej A, Harding LW Jr, Smodlana N, Turner RE (eds) Ecosystems at the land-sea margin: drainage basin to coastal sea. Coastal and Estuar. Stud. 55:241–263Google Scholar
  39. Purcell JE, Uye SH, Lo W (2007) Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Mar Ecol 350:153–174CrossRefGoogle Scholar
  40. Schernewski G, Sterr H (2002) Tourism and environmental quality of the German Baltic coast: conflict or chance? In: Schernewski G, Schiewer U (eds) Baltic coastal ecosystems, structure, function and coastal zone management. CEEDES-Series. Springer, Berlin, pp 217–232Google Scholar
  41. Schneider G, Behrends G (1998) Top-down control in a neritic plankton system by Aurelia aurita medusae—a summary. Ophelia 48:71–82CrossRefGoogle Scholar
  42. Siegel H, Seifert T, Schernewski G, Gerth M, Ohde T, Reißmann J, Podsetchine V (2005) Discharge and transport processes along the German Baltic sea coast. Ocean Dynam 55:47–66. doi: 10.1007/s10236-005-0110-6 CrossRefGoogle Scholar
  43. Sparks C, Buecher E, Brierley AS, Axelsen BE, Boyer H, Gibbons MJ (2001) Observations on the distribution and relative abundance of the scyphomedusan Chrysaora hysoscella (Linné, 1766) and the hydrozoan Aequorea aequorea (Forskål, 1775) in the northern Benguela ecosystem. Hydrobiologia 451:275–286CrossRefGoogle Scholar
  44. StatA MV (2008) Statistischer Jahresbericht 2007–Entwicklungen in MV. Statistische Hefte 2008, Statistisches Amt Mecklenburg-VorpommernGoogle Scholar
  45. Statistical Yearbook for the Federal Republic of Germany (2009) Statistisches Bundesamt (Federal Statistical Office), Wiesbaden. ISBN: 978-3-8246-0839-3Google Scholar
  46. Thiel ME (1960) Beobachtungen über Wachstum, Variationen und Abnormitäten bei Cyanea capillata der Ostsee. Abh Verh Naturwiss Ver Hamburg (NF) 4:89–108Google Scholar
  47. Thiel H (1962) Untersuchungen über die Strobilation von Aurelia aurita LAM. An einer Population der Kieler Förde. Aus dem Zool Instit Univ Kiel Kiel Meeresforsch 18:198–230Google Scholar
  48. Wallner A, Hunziker M (2001) Die Kontroverse um den Wolf–experteninterviews zur gesellschaftlichen Akzeptanz des Wolfes in der Schweiz. Forest Snow Landsc Res 76:191–212Google Scholar
  49. Wikström DA (1932) Beobachtungen über die Ohrenqualle (Aurelia aurita L.) in den Schären SW-Finnlands. Memoranda Soc Fauna Flora Fenn 8:14–17Google Scholar
  50. Wilson TD (2003) Knowing when to ask. Introspection and the adaptive unconscious. J Conscious Stud 10:9–10Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Leibniz-Institute for Baltic Sea Research, Coastal and Marine ManagementRostockGermany

Personalised recommendations