Skip to main content
Log in

Eigenschaften und Einsatzgebiete von Knochenersatzmaterialien

  • Zahnärztliche Fortbildung
  • Published:
wissen kompakt Aims and scope

Zusammenfassung

Im Bereich der regenerativen Zahnheilkunde, in der dentalen Implantologie und bei größeren Knochendefiziten im Mund-, Kiefer- und Gesichtsbereich werden routinemäßig Knochenersatzmaterialien (KEM) eingesetzt (Sinuslift, horizonale und vertikale Knochendefekte). KEM müssen strukturelle, physikalische und biologische Eigenschaften des jeweiligen Knochenlagers imitieren. Biokompatibilität und biologische Abbaubarkeit sind wichtig für die vaskuläre und knöcherne Erschließung und für die funktionelle Einheilung. KEM müssen mit direkt benachbarten Gewebestrukturen (Knochen) bzw. Zellpopulationen interagieren, d. h. Knochengewebe wächst entlang den Leitstrukturen des KEM (Osseokonduktion) ein, Porenstrukturen ermöglichen den Transfer von Nährstoffen und Zytokinen. Lokale Infekte und Pathologien stellen eine Kontraindikation für eine knöcherne Augmentation dar. Ein intaktes und ausreichend dimensionertes weichgewebliches Lager ist eine unabdingbare Voraussetzung für eine erfolgreiche knöcherne Augmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Orsini M et al (2008) Long-term clinical results on the use of bone-replacement grafts in the treatment of intrabony periodontal defects. Comparison of the use of autogenous bone graft plus calcium sulfate to autogenous bone graft covered with a bioabsorbable membrane. J Periodontol 79:1630–1637

    Article  PubMed  Google Scholar 

  2. Sculean A et al (2004) Healing of human intrabony defects following regenerative periodontal therapy with a bovine-derived xenograft and guided tissue regeneration. Clin Oral Investig 8:70–74

    Article  PubMed  Google Scholar 

  3. Sculean A et al (2008) Clinical and histologic evaluation of an enamel matrix derivative combined with a biphasic calcium phosphate for the treatment of human intrabony periodontal defects. J Periodontol 79:1991–1999

    Article  PubMed  Google Scholar 

  4. Esposito M et al (2006) The efficacy of various bone augmentation procedures for dental implants: a Cochrane systematic review of randomized controlled clinical trials. Int J Oral Maxillofac Implants 21:696–710

    PubMed  Google Scholar 

  5. Froum SJ et al (2006) Comparison of mineralized cancellous bone allograft (Puros) and anorganic bovine bone matrix (Bio-Oss) for sinus augmentation: histomorphometry at 26 to 32 weeks after grafting. Int J Periodontics Restorative Dent 26:543–551

    PubMed  Google Scholar 

  6. Lee JH et al (2008) Histologic and clinical evaluation for maxillary sinus augmentation using macroporous biphasic calcium phosphate in human. Clin Oral Implants Res 19:767–771

    Article  PubMed  Google Scholar 

  7. Maiorana C et al (2006) Sinus elevation with alloplasts or xenogenic materials and implants: an up-to-4-year clinical and radiologic follow-up. Int J Oral Maxillofac Implants 21:426–432

    PubMed  Google Scholar 

  8. Mangano C et al (2006) Maxillary sinus augmentation using an engineered porous hydroxyapatite: a clinical, histological, and transmission electron microscopy study in man. J Oral Implantol 32:122–131

    Article  PubMed  Google Scholar 

  9. Artzi Z et al (2003) Vertical ridge augmentation using xenogenic material supported by a configured titanium mesh: clinicohistopathologic and histochemical study. Int J Oral Maxillofac Implants 18:440–406

    PubMed  Google Scholar 

  10. Hising P, Bolin A, Branting C (2001) Reconstruction of severely resorbed alveolar ridge crests with dental implants using a bovine bone mineral for augmentation. Int J Oral Maxillofac Implants 16:90–97

    PubMed  Google Scholar 

  11. Dumbach J et al (1994) Mandibular reconstruction with cancellous bone, hydroxylapatite and titanium mesh. J Craniomaxillofac Surg 22:151–155

    PubMed  Google Scholar 

  12. Fanuscu MI, Chang TL (2004) Three-dimensional morphometric analysis of human cadaver bone: microstructural data from maxilla and mandible. Clin Oral Implants Res 15:213–218

    Article  PubMed  Google Scholar 

  13. Nkenke E et al (2003) Implant stability and histomorphometry: a correlation study in human cadavers using stepped cylinder implants. Clin Oral Implants Res 14:601–609

    Article  PubMed  Google Scholar 

  14. Ulm C et al (2009) Characteristic features of trabecular bone in edentulous mandibles. Clin Oral Implants Res 20:594–600

    PubMed  Google Scholar 

  15. Tadic D, Epple M (2004) A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials 25:987–994

    Article  PubMed  Google Scholar 

  16. Weibrich G et al (1999) Roentgen spectrometry comparison of currently available bone substitutes. Mund Kiefer Gesichtschir 3:92–97

    Article  PubMed  Google Scholar 

  17. Klein M et al (2009) Pore characteristics of bone substitute materials assessed by microcomputed tomography. Clin Oral Implants Res 20:67–74

    Article  PubMed  Google Scholar 

  18. Chang BS et al (2000) Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials 21:1291–1298

    Article  PubMed  Google Scholar 

  19. Habibovic P et al (2005) 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials 26:3565–3575

    Article  PubMed  Google Scholar 

  20. Okamoto M et al (2006) Influence of the porosity of hydroxyapatite ceramics on in vitro and in vivo bone formation by cultured rat bone marrow stromal cells. J Mater Sci Mater Med 17:327–336

    Article  PubMed  Google Scholar 

  21. Fabbri M, Celotti GC, Ravaglioli A (1995) Hydroxyapatite-based porous aggregates: physico-chemical nature, structure, texture and architecture. Biomaterials 16:225–228

    Article  PubMed  Google Scholar 

  22. Landes CA (2006) Implant-borne prosthetic rehabilitation of bone-grafted cleft versus traumatic anterior maxillary defects. J Oral Maxillofac Surg 64:297–307

    Article  PubMed  Google Scholar 

  23. Widmark G et al (2001) Rehabilitation of patients with severely resorbed maxillae by means of implants with or without bone grafts: a 3- to 5-year follow-up clinical report. Int J Oral Maxillofac Implants 16:73–79

    PubMed  Google Scholar 

  24. Zitzmann NU, Scharer P, Marinello CP (1999) Factors influencing the success of GBR. Smoking, timing of implant placement, implant location, bone quality and provisional restoration. J Clin Periodontol 26:673–682

    Article  PubMed  Google Scholar 

  25. Grötz KA (2002) Zahnärztliche Betreuung von Patienten mit tumortherapeutischer Kopf-Hals-Bestrahlung (Stellungnahme der DGZMK und DEGRO). Dtsch Zahnarztl Z 57:509–511

    Google Scholar 

  26. Grötz KA, Kreusch T (2006) Zahnärztliche Betreuung von Patienten unter/nach Bisphosphonat-Medikation, Stellungnahme der DGZMK, Stand 9/2006. DGZMK

  27. Jensen SS, Terheyden H (2009) Bone augmentation procedures in localized defects in the alveolar ridge: clinical results with different bone grafts and bone-substitute materials. Int J Oral Maxillofac Implants (Suppl 24):218–236

    Google Scholar 

  28. Esposito M et al (2009) Interventions for replacing missing teeth: horizontal and vertical bone augmentation techniques for dental implant treatment. Cochrane Database Syst Rev (4):CD003607

    Google Scholar 

  29. Esposito M et al (2006) Interventions for replacing missing teeth: bone augmentation techniques for dental implant treatment. Cochrane Database Syst Rev (1):CD003607

    Google Scholar 

  30. Nkenke E, Stelzle F (2009) Clinical outcomes of sinus floor augmentation for implant placement using autogenous bone or bone substitutes: a systematic review. Clin Oral Implants Res 20 (Suppl 40):124–133

    Article  PubMed  Google Scholar 

  31. Wallace SS, Froum SJ (2003) Effect of maxillary sinus augmentation on the survival of endosseous dental implants. A systematic review. Ann Periodontol 8:328–343

    Article  PubMed  Google Scholar 

  32. Bornstein MM et al (2008) Performance of dental implants after staged sinus floor elevation procedures: 5-year results of a prospective study in partially edentulous patients. Clin Oral Implants Res 19:1034–1043

    Article  PubMed  Google Scholar 

  33. Valentini P, Abensur DJ (2003) Maxillary sinus grafting with anorganic bovine bone: a clinical report of long-term results. Int J Oral Maxillofac Implants 18:556–560

    PubMed  Google Scholar 

  34. Hallman M, Zetterqvist L (2004) A 5-year prospective follow-up study of implant-supported fixed prostheses in patients subjected to maxillary sinus floor augmentation with an 80:20 mixture of bovine hydroxyapatite and autogenous bone. Clin Implant Dent Relat Res 6:82–89

    Article  PubMed  Google Scholar 

  35. Hatano N, Shimizu Y, Ooya K (2004) A clinical long-term radiographic evaluation of graft height changes after maxillary sinus floor augmentation with a 2:1 autogenous bone/xenograft mixture and simultaneous placement of dental implants. Clin Oral Implants Res 15:339–345

    Article  PubMed  Google Scholar 

  36. Vicente JC de, Hernández-Vallejo G, Braña-Abascal P, Peña I (2010) Maxillary sinus augmentation with autologous bone harvested from the lateral maxillary wall combined with bovine-derived hydroxyapatite: clinical and histologic observations. Clin Oral Implants Res 21:430–438

    Article  PubMed  Google Scholar 

  37. Ferreira CE et al (2009) A clinical study of 406 sinus augmentations with 100% anorganic bovine bone. J Periodontol 80:1920–1927

    Article  PubMed  Google Scholar 

  38. Mangano C et al (2007) Maxillary sinus augmentation with a porous synthetic hydroxyapatite and bovine-derived hydroxyapatite: a comparative clinical and histologic study. Int J Oral Maxillofac Implants 22:980–986

    PubMed  Google Scholar 

  39. Simunek A et al (2005) The sinus lift with phycogenic bone substitute. A histomorphometric study. Clin Oral Implants Res 16:342–348

    Article  PubMed  Google Scholar 

  40. Aguirre Zorzano LA, Rodriguez Tojo MJ, Aguirre Urizar JM (2007) Maxillary sinus lift with intraoral autologous bone and B–tricalcium phosphate: histological and histomorphometric clinical study. Med Oral Patol Oral Cir Bucal 12:E532–E536

    Google Scholar 

  41. Uckan S, Denzi K, Dayangac E et al (2010) Early implant survival in posterior maxilla with or without beta-tricalcium phosphate sinus floor graft. J Oral Maxillofac Surg 68:1642–1645

    Article  PubMed  Google Scholar 

  42. Galindo-Moreno P et al (2008) Clinical and histologic comparison of two different composite grafts for sinus augmentation: a pilot clinical trial. Clin Oral Implants Res 19:755–759

    Article  PubMed  Google Scholar 

  43. Pjetursson BE et al (2009) Maxillary sinus floor elevation using the (transalveolar) osteotome technique with or without grafting material. Part I: Implant survival and patients‘ perception. Clin Oral Implants Res 20:667–676

    Article  PubMed  Google Scholar 

  44. Maiorana C et al (2005) Reduction of autogenous bone graft resorption by means of bio-oss coverage: a prospective study. Int J Periodontics Restorative Dent 25:19–25

    PubMed  Google Scholar 

  45. Adeyemo WL et al (2008) Healing of onlay mandibular bone grafts covered with collagen membrane or bovine bone substitutes: a microscopical and immunohistochemical study in the sheep. Int J Oral Maxillofac Surg 37:651–659

    Article  PubMed  Google Scholar 

  46. Park SH et al (2008) Effect of absorbable membranes on sandwich bone augmentation. Clin Oral Implants Res 19:32–41

    PubMed  Google Scholar 

  47. Siciliano VI et al (2009) Soft tissues healing at immediate transmucosal implants placed into molar extraction sites with buccal self-contained dehiscences. A 12-month controlled clinical trial. Clin Oral Implants Res 20:482–488

    Article  PubMed  Google Scholar 

  48. Rocchietta I, Fontana F, Simion M (2008) Clinical outcomes of vertical bone augmentation to enable dental implant placement: a systematic review. J Clin Periodontol 35 (Suppl 8):203–215

    Article  PubMed  Google Scholar 

  49. Aghaloo TL, Moy PK (2007) Which hard tissue augmentation techniques are the most successful in furnishing bony support for implant placement? Int J Oral Maxillofac Implants 22 (Suppl):49–70

    PubMed  Google Scholar 

  50. Schliephake H (2010) Application of bone growth factors-the potential of different carrier systems. Oral Maxillofac Surg 14:17–22

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.O. Klein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, M., Al-Nawas, B. Eigenschaften und Einsatzgebiete von Knochenersatzmaterialien. wissen kompakt 5, 33–39 (2011). https://doi.org/10.1007/s11838-010-0104-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11838-010-0104-1

Schlüsselwörter

Navigation