Microstructural and Mechanical Stability of Gradient-Nanostructured Mg-Li Alloy During Thermal Exposure

Abstract

Strain-induced gradient nanostructure formation is an effective method for improving the strength of Mg-Li alloys. However, the microstructural and resulting mechanical stability of gradient-nanostructured Mg-Li alloys during thermal exposure have never been studied, thereby limiting their successful application. In this study, we fabricated a gradient-nanostructured Mg-Li alloy by sliding friction treatment and investigated its microstructural and mechanical stability by annealing at different temperatures up to 250°C. The results showed that (1) the lattice parameter c of the Mg phases gradually decreased with increasing temperature, (2) the Mg-Li nanograins exhibited a significantly lower grain growth activation energy (72 kJ/mol) compared with other Mg-based alloys, and (3) the yield strength of the annealed samples was higher than that of the matrix due to synergetic strengthening of the gradient microstructures at the micron scale.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    W.J. Kim, M.J. Kim, and J.Y. Wang, Mater. Sci. Eng. A 516, 17 (2009)

    Article  Google Scholar 

  2. 2.

    T.C. Chang, J.Y. Wang, C.L. Chu, and S. Lee, Mater. Lett. 60, 3272 (2006)

    Article  Google Scholar 

  3. 3.

    K. Lu, K. Lu, Acta Metall. Sin. 51, 1 (2015)

    Google Scholar 

  4. 4.

    K. Lu, and J. Lu, Mater. Sci. Eng. A 375–377, 38 (2004)

    Article  Google Scholar 

  5. 5.

    X. Liu, H. Zhang, and K. Lu, Acta Mater. 96, 24 (2015)

    Article  Google Scholar 

  6. 6.

    T. Fang, W. Li, N. Tao, and K. Lu, Science 331, 1587 (2011)

    Article  Google Scholar 

  7. 7.

    X. Wu, P. Jiang, L. Chen, F. Yuan, and Y.T. Zhu, Proc. Natl. Acad. Sci. 111, 7197 (2014)

    Article  Google Scholar 

  8. 8.

    H. Gleiter, Acta Mater. 48, 1 (2000)

    Article  Google Scholar 

  9. 9.

    C.S. Pande, and R.A. Masumura, Mater. Sci. Eng. A 409, 125 (2005)

    Article  Google Scholar 

  10. 10.

    T.B. Massalski, J.L. Murray, L.H. Bennet, and H. Baker, Binary Alloy Phase Diagram, 2nd edn. (American Society for Metals, Materials Park, 1987), p 1487

    Google Scholar 

  11. 11.

    Y.S. Zhang, Q.M. Wei, H.Z. Niu, Y.S. Li, C. Chen, Z.T. Yu, X.F. Bai, and P.X. Zhang, Int. J. Refract. Metals Hard Mater. 45, 71 (2014)

    Article  Google Scholar 

  12. 12.

    Y.S. Zhang, P.X. Zhang, H.Z. Niu, C. Chen, G. Wang, D.H. Xiao, X.H. Chen, Z.T. Yu, S.B. Yuan, and X.F. Bai, Mater. Sci. Eng. A 607, 351 (2014)

    Article  Google Scholar 

  13. 13.

    C.H. Chiu, H.Y. Wu, J.Y. Wang, and S. Lee, J. Alloys Compd. 460, 246 (2008)

    Article  Google Scholar 

  14. 14.

    J.W. Liu, Z.G. Zhao, and S.Q. Lu, Catal. Today 318, 119 (2018)

    Article  Google Scholar 

  15. 15.

    S.P. Saini, S. Kumar, R. Barman, A. Dixit, and V. Kumar, Mater. Today Proc. 3, 3035 (2016)

    Article  Google Scholar 

  16. 16.

    J. Huang, W. Zhou, B. Kai, and C. Jiang, J. Mater. Eng. Perform. 21, 915 (2012)

    Article  Google Scholar 

  17. 17.

    J. Huang, K.M. Zhang, Y.F. Jia, C.C. Zhang, X.C. Zhang, X.F. Ma, and S.T. Tu, J. Mater. Sci. Technol. 35, 409 (2019)

    Article  Google Scholar 

  18. 18.

    Y. Ashkenazy, N.Q. Vo, D. Schwen, R.S. Averback, and P. Bellon, Acta Mater. 60, 984 (2012)

    Article  Google Scholar 

  19. 19.

    Y. Watanabe, K. Yokoyama, and H. Hosoda, Mater. Sci. Forum 396–402, 1467 (2002)

    Article  Google Scholar 

  20. 20.

    Q. Miao, L. Hu, X. Wang, and E. Wang, J. Alloys Compd. 493, 87 (2010)

    Article  Google Scholar 

  21. 21.

    O.N. Senkov, M.L. Övecoglu, N. Srisukhumbowornchai, and F.H. Froes, Nanostruct. Mater. 10, 935 (1998)

    Article  Google Scholar 

  22. 22.

    J.M. Xu, Y. Liu, B. Jin, J.X. Li, S.M. Zhai, X.J. Yang, and J. Lu, Acta Metall. Sin. 28, 1162 (2015)

    Article  Google Scholar 

  23. 23.

    H. Yu, H.P. Zhou, Y. Sun, L.X. Hu, and Z.P. Wan, J. Alloys Compd. 722, 39 (2017)

    Article  Google Scholar 

  24. 24.

    G. Higgins, Metal. Sci. 8, 143 (1974)

    Article  Google Scholar 

  25. 25.

    Z.R. Liu, and D.Y. Li, Acta Mater. 89, 225 (2015)

    Article  Google Scholar 

  26. 26.

    J. Li, G.J. Weng, S. Chen, and X. Wu, Int. J. Plast. 88, 89 (2017)

    Article  Google Scholar 

  27. 27.

    Z. Zeng, X. Li, D. Xu, L. Lei, and T. Zhu, Extreme Mech. Lett. 8, 213 (2015)

    Article  Google Scholar 

  28. 28.

    J.F. Zhao, X.C. Lu, F.P. Yuan, Q.H. Kan, S.X. Qu, G.Z. Kang, and X. Zhang, Int. J. Plast. 125, 314 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 51701163, 51701166), Natural Science Basic Research Plan in Shaanxi Province of China (2019JQ-410), Key Research and Development Projects of Shaanxi Province (2020GY-292), and Innovation Team in key areas of Shaanxi Province (2016KCT-30). The authors thank Yongqing Fu for helpful discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 438 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Du, Y., Huo, W. et al. Microstructural and Mechanical Stability of Gradient-Nanostructured Mg-Li Alloy During Thermal Exposure. JOM (2021). https://doi.org/10.1007/s11837-021-04582-5

Download citation