B-Doped Carbon Powder Synthesized from PU/PF/GO Composite as Electrode Material for Supercapacitors

Abstract

Graphite is a vital natural mineral material that is used to synthesize graphene oxide. In the present study, polyurethane/phenolic/graphene oxide composite materials were prepared from polyisocyanate prepolymer, phenolic resin prepolymer, and graphene oxide then treated with boric acid, ferric chloride, and zinc chloride and carbonized at high temperatures to synthesize boron-doped carbon powder (UFGC-B-Fe-Zn). The UFGC-B-Fe-Zn exhibited a Brunauer–Emmett–Teller specific surface area SBET of 885.9759 m2 g−1 and a specific pore volume of 0.550491 cm3 g−1, as well as high specific capacitance of 377.4 F g−1 at 0.5 A g−1. Used as an electrode material for supercapacitors, UFGC-B-Fe-Zn exhibited excellent rate capability and durability as well as low charge and ion diffusion resistance. In 6 M KOH electrolyte, the assembled symmetrical supercapacitor achieved relatively high energy density of 7.43 Wh kg−1 at 474 W kg−1. Moreover, it displayed excellent cycling stability (90.9% retention rate after 5000 cycles).

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    S. Demirezen, A. Kaya, S.A. Yerişkin, M. Balbaşı, and İ Uslu, S. Demirezen, A. Kaya, S.A. Yerişkin, M. Balbaşı, and İ Uslu, Res. Phys. 6, 180–185 (2016).

    Google Scholar 

  2. 2.

    J.L. Zheng, X. Pan, X.M. Huang, D.B. Xiong, Y. Shang, X.X. Li, N. Wang, W.M. Lau, and H.Y. Yang, J.L. Zheng, X. Pan, X.M. Huang, D.B. Xiong, Y. Shang, X.X. Li, N. Wang, W.M. Lau, and H.Y. Yang, Chem. Eng. J. 396, 125197 (2020).

    Article  Google Scholar 

  3. 3.

    N.L.W. Septiani, Y.V. Kaneti, K.B. Fathoni, J. Wang, Y. Ide, B. Yuliarto, Nugraha, H.K. Dipojono, A.K. Nanjundan, D. Golberg, Y. Bando, and Y. Yamauchi, N.L.W. Septiani, Y.V. Kaneti, K.B. Fathoni, J. Wang, Y. Ide, B. Yuliarto, Nugraha, H.K. Dipojono, A.K. Nanjundan, D. Golberg, Y. Bando, and Y. Yamauchi, Nano Energy 67, 104270 (2020).

    Article  Google Scholar 

  4. 4.

    S. Satpathy, S. Das, and B.K. Bhattacharyya, S. Satpathy, S. Das, and B.K. Bhattacharyya, J. Energy Storage 27, 101044 (2020).

    Article  Google Scholar 

  5. 5.

    Q. Miao, F. Rouhani, H. Moghanni-Bavil-Olyaei, K.G. Liu, X.M. Gao, J.Z. Li, X.D. Hu, Z.M. Jin, M.L. Hu, and A. Morsali, Q. Miao, F. Rouhani, H. Moghanni-Bavil-Olyaei, K.G. Liu, X.M. Gao, J.Z. Li, X.D. Hu, Z.M. Jin, M.L. Hu, and A. Morsali, Chem. Eur. J. 10, 1002 (2020).

    Google Scholar 

  6. 6.

    J.H. Jiang, W.D. Shi, S.Y. Song, Q.L. Hao, W.Q. Fan, X.F. Xia, X. Zhang, Q. Wang, and D. Yan, J.H. Jiang, W.D. Shi, S.Y. Song, Q.L. Hao, W.Q. Fan, X.F. Xia, X. Zhang, Q. Wang, and D. Yan, J. Power Sources. 248, 1281 (2014).

    Article  Google Scholar 

  7. 7.

    Q. Abbas, and F. Béguin, Q. Abbas, and F. Béguin, Prog. Nat. Sci. 25, 622 (2015).

    Article  Google Scholar 

  8. 8.

    H. Sun, P. She, K.L. Xu, Y.X. Shang, S.Y. Yin, and Z.N. Liu, H. Sun, P. She, K.L. Xu, Y.X. Shang, S.Y. Yin, and Z.N. Liu, Synth. Met. 209, 68 (2015).

    Article  Google Scholar 

  9. 9.

    M. Mohan, K.N.N. Unni, and R.B. Rakhi, M. Mohan, K.N.N. Unni, and R.B. Rakhi, Vacuum 166, 335 (2019).

    Article  Google Scholar 

  10. 10.

    D. Shao, L. Wang, B. Lu, J. Guo, S. Zhang, and Y. Lu, D. Shao, L. Wang, B. Lu, J. Guo, S. Zhang, and Y. Lu, J. Electroanal. Chem. 847, 113188 (2019).

    Article  Google Scholar 

  11. 11.

    Z.G. Özdemir, N.Y. Canli, B. Senkal, Y. Gürsel, and M. Okutan, Z.G. Özdemir, N.Y. Canli, B. Senkal, Y. Gürsel, and M. Okutan, J. Mol. Liq. 211, 442 (2015).

    Article  Google Scholar 

  12. 12.

    J. Huo, P. Zheng, X. Wang, and S. Guo, J. Huo, P. Zheng, X. Wang, and S. Guo, Appl. Surf. Sci. 442, 575 (2018).

    Article  Google Scholar 

  13. 13.

    K.V. Karthik, N.S. Shruthi, V. Ganagaraju, and D. Rangappa, K.V. Karthik, N.S. Shruthi, V. Ganagaraju, and D. Rangappa, Mater. Today Proc. 4, 12229–12237 (2017).

    Article  Google Scholar 

  14. 14.

    L. Sun, H. Zhou, L. Li, Y. Yao, H.N. Qu, C.L. Zhang, S.H. Liu, and Y.M. Zhou, L. Sun, H. Zhou, L. Li, Y. Yao, H.N. Qu, C.L. Zhang, S.H. Liu, and Y.M. Zhou, ACS Appl. Mater. Interfaces 9, 26088 (2007).

    Article  Google Scholar 

  15. 15.

    F.Y. Ke, J. Tang, S.Y. Guang, and H.Y. Xu, F.Y. Ke, J. Tang, S.Y. Guang, and H.Y. Xu, RSC Adv. 6, 14712 (2016).

    Article  Google Scholar 

  16. 16.

    T. Eguchi, D. Tashima, M. Fukuma, and S. Kumagai, T. Eguchi, D. Tashima, M. Fukuma, and S. Kumagai, J. Clean Prod. 259, 120822 (2020).

    Article  Google Scholar 

  17. 17.

    X. Zhang, Y. Wang, Y. Du, M. Qing, F. Yu, Z.Q. Tian, and P.K. Shen, X. Zhang, Y. Wang, Y. Du, M. Qing, F. Yu, Z.Q. Tian, and P.K. Shen, Electrochim. Acta 20, 272 (2019).

    Article  Google Scholar 

  18. 18.

    A. Kurniawan, L.K. Ong, F. Kurniawan, C.X. Lin, F.E. Soetaredjo, X.S. Zhao, and S. Ismadji, A. Kurniawan, L.K. Ong, F. Kurniawan, C.X. Lin, F.E. Soetaredjo, X.S. Zhao, and S. Ismadji, RSC Adv. 4, 34739 (2014).

    Article  Google Scholar 

  19. 19.

    L. Sun, H. Zhou, Y. Li, F. Yu, C. Zhang, X. Liu, and Y. Zhou, L. Sun, H. Zhou, Y. Li, F. Yu, C. Zhang, X. Liu, and Y. Zhou, Mater. Lett. 189, 107 (2017).

    Article  Google Scholar 

  20. 20.

    P. Wang, G. Zhang, M.Y. Li, Y.X. Yin, J.Y. Li, G. Li, W.P. Wang, P. Wen, F.F. Cao, and Y.G. Guo, P. Wang, G. Zhang, M.Y. Li, Y.X. Yin, J.Y. Li, G. Li, W.P. Wang, P. Wen, F.F. Cao, and Y.G. Guo, Chem. Eng. J. 375, 122020 (2019).

    Article  Google Scholar 

  21. 21.

    L. Sun, Y. Yao, Y. Zhou, L. Li, H. Zhou, M. Guo, S. Liu, C. Feng, Z. Qi, B. Gao, and A.C.S. Sustain, L. Sun, Y. Yao, Y. Zhou, L. Li, H. Zhou, M. Guo, S. Liu, C. Feng, Z. Qi, B. Gao, and A.C.S. Sustain, Chem. Eng. 6, 13494 (2018).

    Google Scholar 

  22. 22.

    X.L. Dong, A.H. Lu, B. He, and W.C. Li, X.L. Dong, A.H. Lu, B. He, and W.C. Li, J. Power Sources. 327, 535 (2016).

    Article  Google Scholar 

  23. 23.

    H. Sun, H. Quan, M. Pan, Z. Zhang, Y. Zeng, and D. Chen, H. Sun, H. Quan, M. Pan, Z. Zhang, Y. Zeng, and D. Chen, J. Alloys Compd. 826, 154208 (2020).

    Article  Google Scholar 

  24. 24.

    H. Lin, Y. Liu, Z. Chang, S. Yan, S. Liu, and S. Han, H. Lin, Y. Liu, Z. Chang, S. Yan, S. Liu, and S. Han, Microporous Mesoporous Mater. 292, 109707 (2020).

    Article  Google Scholar 

  25. 25.

    M. Harmas, T. Thomberg, H. Kurig, T. Romann, A. Jänes, and E. Lust, M. Harmas, T. Thomberg, H. Kurig, T. Romann, A. Jänes, and E. Lust, J. Power Sources. 326, 624 (2016).

    Article  Google Scholar 

  26. 26.

    M. Härmas, T. Thomberg, and A. Jänes, M. Härmas, T. Thomberg, and A. Jänes, J. Electrochem. Soc. 167, 080533 (2020).

    Article  Google Scholar 

  27. 27.

    S.S. Balaji, M. Karnan, P. Anandhaganesh, S.M. Tauquir, and M. Sathish, S.S. Balaji, M. Karnan, P. Anandhaganesh, S.M. Tauquir, and M. Sathish, Appl. Surf. Sci. 491, 560 (2019).

    Article  Google Scholar 

  28. 28.

    L. Niu, Z. Li, W. Hong, J. Sun, Z. Wang, L. Ma, J. Wang, and S. Yang, L. Niu, Z. Li, W. Hong, J. Sun, Z. Wang, L. Ma, J. Wang, and S. Yang, Electrochim. Acta. 108, 666 (2013).

    Article  Google Scholar 

  29. 29.

    J. Li, X. Li, D. Xiong, L. Wang, and D. Li, J. Li, X. Li, D. Xiong, L. Wang, and D. Li, Appl. Surf. Sci. 475, 285 (2019).

    Article  Google Scholar 

  30. 30.

    J. Gao, X. Wang, Y. Zhang, J. Liu, Q. Lu, and M. Liu, J. Gao, X. Wang, Y. Zhang, J. Liu, Q. Lu, and M. Liu, Electrochim. Acta. 207, 266 (2016).

    Article  Google Scholar 

  31. 31.

    R. Nankya, J. Lee, D.O. Opar, and H. Jung, R. Nankya, J. Lee, D.O. Opar, and H. Jung, Appl. Surf. Sci. 489, 552 (2019).

    Article  Google Scholar 

  32. 32.

    L.K. Shrestha, R.G. Shrestha, S. Maji, B.P. Pokharel, R. Rajbhandari, R.L. Shrestha, R.R. Pradhananga, J.P. Hill, and K. Ariga, L.K. Shrestha, R.G. Shrestha, S. Maji, B.P. Pokharel, R. Rajbhandari, R.L. Shrestha, R.R. Pradhananga, J.P. Hill, and K. Ariga, Nanomaterials. 10, 728 (2020).

    Article  Google Scholar 

  33. 33.

    J. Li, F. Luo, T. Lin, J. Yang, S. Yang, D. He, D. Xiao, and W. Liu, J. Li, F. Luo, T. Lin, J. Yang, S. Yang, D. He, D. Xiao, and W. Liu, Chem. Phys. Lett. 753, 137597 (2020).

    Article  Google Scholar 

  34. 34.

    R.L. Shrestha, T. Shrestha, B.M. Tamrakar, R.G. Shrestha, S. Maji, K. Ariga, and L.K. Shrestha, R.L. Shrestha, T. Shrestha, B.M. Tamrakar, R.G. Shrestha, S. Maji, K. Ariga, and L.K. Shrestha, Materials. 13, 2371 (2020).

    Article  Google Scholar 

  35. 35.

    W.S. Hummers, R.E. Offeman, and J. Am, W.S. Hummers, and R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1985).

    Article  Google Scholar 

  36. 36.

    R. Yan, K. Leus, J.P. Hofmann, M. Antonietti, and M. Oschatz, R. Yan, K. Leus, J.P. Hofmann, M. Antonietti, and M. Oschatz, Nano Energy. 67, 104240 (2020).

    Article  Google Scholar 

  37. 37.

    Z. Chen, L. Hou, Y. Cao, Y. Tang, and Y. Li, Z. Chen, L. Hou, Y. Cao, Y. Tang, and Y. Li, Appl. Surf. Sci. 435, 937 (2018).

    Article  Google Scholar 

  38. 38.

    J.L.G. Urbano, G.M. Fernandez, M. Arnaiz, J. Ajuria, T. Rojo, and D. Carriazo, J.L.G. Urbano, G.M. Fernandez, M. Arnaiz, J. Ajuria, T. Rojo, and D. Carriazo, Carbon 162, 273 (2020).

    Article  Google Scholar 

  39. 39.

    B. Ashourirad, M. Demir, R.A. Smith, R.B. Gupta, and H.M. El-Kaderi, B. Ashourirad, M. Demir, R.A. Smith, R.B. Gupta, and H.M. El-Kaderi, RSC Adv. 8, 12300 (2018).

    Article  Google Scholar 

  40. 40.

    H. Jia, S. Qiu, W. Li, D. Liu, and X. Xie, H. Jia, S. Qiu, W. Li, D. Liu, and X. Xie, J. Electroanal. Chem. 863, 114057 (2020).

    Article  Google Scholar 

  41. 41.

    K. Zeng, J. Su, X. Cao, X. Zheng, X. Li, J.H. Tian, C. Jin, and R. Yang, K. Zeng, J. Su, X. Cao, X. Zheng, X. Li, J.H. Tian, C. Jin, and R. Yang, J. Alloys Compd. 824, 153908 (2020).

    Article  Google Scholar 

  42. 42.

    X. Hu, Y. Deng, J. Zhou, B. Liu, A. Yang, T. Jin, and Y.F. Tsang, X. Hu, Y. Deng, J. Zhou, B. Liu, A. Yang, T. Jin, and Y.F. Tsang, Sep. Purif. Technol. 251, 117376 (2020).

    Article  Google Scholar 

  43. 43.

    Y. Chang, C. Yuan, C. Liu, J. Mao, Y. Li, H. Wu, Y. Wu, Y. Xu, B. Zeng, and L. Dai, Y. Chang, C. Yuan, C. Liu, J. Mao, Y. Li, H. Wu, Y. Wu, Y. Xu, B. Zeng, and L. Dai, J. Power Sources. 365, 354 (2017).

    Article  Google Scholar 

  44. 44.

    Y. Ma, X. Zhang, Z. Liang, C. Wang, Y. Sui, B. Zheng, Y. Ye, W. Ma, Q. Zhao, and C. Qin, Y. Ma, X. Zhang, Z. Liang, C. Wang, Y. Sui, B. Zheng, Y. Ye, W. Ma, Q. Zhao, and C. Qin, Electrochim. Acta. 337, 135800 (2020).

    Article  Google Scholar 

  45. 45.

    C. Wang, X. Zhang, J. Wang, Y. Ma, S. Lv, J. Xiang, M. Chu, T. Sun, and C. Qin, C. Wang, X. Zhang, J. Wang, Y. Ma, S. Lv, J. Xiang, M. Chu, T. Sun, and C. Qin, J. Electrochem. Soc. 165, A1 (2018).

    Article  Google Scholar 

  46. 46.

    Y. Liang, Y. Lu, G. Xiao, J. Zhang, H. Chi, and Y. Dong, Y. Liang, Y. Lu, G. Xiao, J. Zhang, H. Chi, and Y. Dong, Appl. Surf. Sci. 529, 147141 (2020).

    Article  Google Scholar 

  47. 47.

    F. Wang, L. Chen, H. Li, G. Duan, S. He, L. Zhang, G. Zhang, Z. Zhou, and S. Jiang, F. Wang, L. Chen, H. Li, G. Duan, S. He, L. Zhang, G. Zhang, Z. Zhou, and S. Jiang, Chin. Chem. Lett. 31, 1986 (2020).

    Article  Google Scholar 

  48. 48.

    B. Yu, G. Jiang, C. Cao, N. Lei, C. Li, U. Evariste, and P. Ma, B. Yu, G. Jiang, C. Cao, N. Lei, C. Li, U. Evariste, and P. Ma, J. Energy Storage. 30, 101537 (2020).

    Article  Google Scholar 

  49. 49.

    S.A. Ansari, N. Parveen, H.M. Kotb, and A. Alshoaibi, S.A. Ansari, N. Parveen, H.M. Kotb, and A. Alshoaibi, Electrochim. Acta. 355, 136783 (2020).

    Article  Google Scholar 

  50. 50.

    Y. Huang, J. Yang, L. Hu, D. Xia, Q. Zhang, Y. Liao, H. Li, W. Yang, C. He, and D. Shu, Y. Huang, J. Yang, L. Hu, D. Xia, Q. Zhang, Y. Liao, H. Li, W. Yang, C. He, and D. Shu, Environ. Sci. NANO 6, 1430 (2019).

    Article  Google Scholar 

  51. 51.

    Z. Gao, X. Wang, J. Chang, D. Wu, L. Wang, X. Liu, F. Xu, Y. Guo, and K. Jiang, Z. Gao, X. Wang, J. Chang, D. Wu, L. Wang, X. Liu, F. Xu, Y. Guo, and K. Jiang, RSC Adv. 5, 48665 (2015).

    Article  Google Scholar 

  52. 52.

    V. Thirumal, A. Pandurangan, R. Jayavel, and R. Ilangovan, V. Thirumal, A. Pandurangan, R. Jayavel, and R. Ilangovan, Synth. Met. 220, 524 (2016).

    Article  Google Scholar 

  53. 53.

    M. Wang, J. Yang, S. Liu, M. Li, C. Hu, and J. Qiu, M. Wang, J. Yang, S. Liu, M. Li, C. Hu, and J. Qiu, J. Colloid Interface Sci. 560, 69 (2020).

    Article  Google Scholar 

  54. 54.

    Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang, and X. Duan, Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang, and X. Duan, ACE NANO. 7, 4042 (2013).

    Article  Google Scholar 

  55. 55.

    H. Guo, and Q. Gao, H. Guo, and Q. Gao, J. Power Sources. 186, 551 (2009).

    Article  Google Scholar 

  56. 56.

    C. Wang, and T. Liu, C. Wang, and T. Liu, J. Alloys Compd. 696, 42 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of the National Natural Science Foundation of China (Grant No. 21372067) and the Joint Guidance Project of Natural Science Foundation of Heilongjiang Province (Grant No. LH2020E103).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiankai Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Ren, X., Liu, J. et al. B-Doped Carbon Powder Synthesized from PU/PF/GO Composite as Electrode Material for Supercapacitors. JOM (2021). https://doi.org/10.1007/s11837-020-04554-1

Download citation