Cobalt-doped Vanadium Pentoxide Microflowers as Superior Cathode for Lithium-Ion Battery

Abstract

To meet the ever-increasing demand for higher energy density and power density, developing cathode materials with high specific capacity has become an urgent problem. V2O5 has been considered as one of the most promising cathodes for its high theoretical specific capacity (443 mAh g−1), abundant source, and low cost. In this work, cobalt-doped vanadium pentoxide (Co-V2O5) microflowers were synthesized through a simple solvothermal method. The doped Co not only improves the electronic conductivity but also increases the diffusion coefficient of the lithium ions. Benefiting from the appropriate amount of Co doping, the charge transfer impedance decreases from 51 to 28 Ω and the diffusion coefficient of the lithium ions increased from 2.81×10−17 cm2 s−1 to 3.31×10−16 cm2 s−1. The optimal Co-V2O5 microflowers deliver a high reversible capacity of 166 mAh g−1 after 200 cycles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    A. Tomaszewska, Z. Chu, X. Feng, S. O’Kane, X. Liu, J. Chen, C. Ji, E. Endler, R. Li, L. Liu, Y. Li, S. Zheng, S. Vetterlein, M. Gao, J. Du, M. Parkes, M. Ouyang, M. Marinescu, G. Offer, and B. Wu, eTransportation 1, 100011. (2019).

    Article  Google Scholar 

  2. 2.

    W. Chen, J. Liang, Z. Yang, and G. Li, Energy Procedia 158, 4363. (2019).

    Article  Google Scholar 

  3. 3.

    C. Liu, J. Lin, H. Cao, Y. Zhang, and Z. Sun, J. Clean. Prod. 228, 801. (2019).

    Article  Google Scholar 

  4. 4.

    J. Song, S. Guo, L. Kou, H. Liu, K. Kajiyoshi, J. Su, and P. Zheng, J. Mater. Sci. Mater. Electron. 31, 16037. (2020).

    Article  Google Scholar 

  5. 5.

    R. Gu, R. Qian, Y. Lyu, and B. Guo, ACS Sustain. Chem. Eng. 8, 25. (2020).

    Google Scholar 

  6. 6.

    T. Tian, T.-W. Zhang, Y.-C. Yin, Y.-H. Tan, Y.-H. Song, L.-L. Lu, and H.-B. Yao, Nano Lett. 20, 1. (2020).

    Article  Google Scholar 

  7. 7.

    Z. Cai, Y. Ma, X. Huang, X. Yan, Z. Yu, S. Zhang, G. Song, Y. Xu, C. Wen, and W. Yang, J. Energy Storage 27, 101036. (2020).

    Article  Google Scholar 

  8. 8.

    H. Lee, S. Kim, N.S. Parmar, J. Chung, K. Kim, and J. Choi, J. Power Sources 434, 226713 (2019).

    Article  Google Scholar 

  9. 9.

    Y. Shao, B. Huang, Z. Lu, Y. Liu, X. Meng, L. Du, H. Song, and S. Liao, Energy Technol. 7, 4. (2019).

    Article  Google Scholar 

  10. 10.

    X. Zeng, M. Li, D. Abd El-Hady, W. Alshitari, A.S. Al-Bogami, J. Lu, and K. Amine, Adv. Energy Mater. 9, 27. (2019).

    Google Scholar 

  11. 11.

    J. Song, S. Guo, D. Ren, H. Liu, L. Kou, J. Su, and P. Zheng, Ceram. Int. 46(Part B), 8. (2020).

    Google Scholar 

  12. 12.

    P. He, Z. Ding, X. Zhao, J. Liu, S. Yang, P. Gao, and L.-Z. Fan, Inorg. Chem. 58, 19. (2019).

    Google Scholar 

  13. 13.

    M. Jing, M. Zhou, G. Li, Z. Chen, W. Xu, X. Chen, Z. Hou, and A.C.S. Appl, Mater. Interfaces 9, 11. (2017).

    Google Scholar 

  14. 14.

    X. Wang, L. Sun, X. Sun, X. Li, and D. He, X. Wang, L. Sun, X. Sun, X. Li, and D. He, Mater. Res. Bull. 96, 533–537. (2017).

    Article  Google Scholar 

  15. 15.

    H. Fu, Z. Xu, T. Wang, K. Li, X. Shen, J. Li, and J. Huang, J. Electrochem. Soc. 165, 3. (2018).

    Article  Google Scholar 

  16. 16.

    H. Li, Q. Su, J. Kang, M. Huang, M. Feng, H. Feng, P. Huang, and G. Du, Mater. Lett. 217, 276. (2018).

    Article  Google Scholar 

  17. 17.

    X. Zhang, Y. Zhu, A.M. Bruck, L.M. Housel, L. Wang, C.D. Quilty, K.J. Takeuchi, E.S. Takeuchi, A.C. Marschilok, and G. Yu, Energy Storage Mater. 19, 439. (2019).

    Article  Google Scholar 

  18. 18.

    J. Zeng, J. Huang, J. Liu, T. Xie, C. Peng, Y. Lu, P. Lu, R. Zhang, and J. Min, Carbon 154, 24. (2019).

    Article  Google Scholar 

  19. 19.

    S. Natarajan, S.-J. Kim, and V. Aravindan, J. Mater. Chem. A 8, 19. (2020).

    Article  Google Scholar 

  20. 20.

    Y. Yue, and H. Liang, Adv. Energy Mater. 7, 17. (2017).

    Article  Google Scholar 

  21. 21.

    N. Aliahmad, Y. Liu, J. Xie, M. Agarwal, and A.C.S. Appl, Mater. Interfaces 10, 19. (2018).

    Article  Google Scholar 

  22. 22.

    M. Panagopoulou, D. Vernardou, E. Koudoumas, N. Katsarakis, D. Tsoukalas, and Y.S. Raptis, The. J. Phys. Chem. C 121, 1. (2017).

    Article  Google Scholar 

  23. 23.

    Y. Ji, D. Fang, C. Wang, Z. Zhou, Z. Luo, J. Huang, and J. Yi, J. Alloys Compd. 742, 567. (2018).

    Article  Google Scholar 

  24. 24.

    Z. Li, C. Zhang, C. Liu, H. Fu, X. Nan, K. Wang, X. Li, W. Ma, X. Lu, and G. Cao, Electrochim. Acta 222, 1831. (2016).

    Article  Google Scholar 

  25. 25.

    K.K. Purushothaman, B. Saravanakumar, G. Muralidharan, and M. Dhanashankar, Mater. Technol. 32, 9. (2017).

    Article  Google Scholar 

  26. 26.

    P. Bhattacharya, T. Joo, M. Kota, and H.S. Park, Ceram. Int. 44, 1. (2018).

    Article  Google Scholar 

  27. 27.

    K Karthik, K Pradeeswari, R Mohan Kumar, and R Murugesan, Mater. Res. Innov. (2019)

  28. 28.

    M. Farahmandjou, M. Farahmandjou, J. Nanomed. Res. 5, 00103. (2017).

    Article  Google Scholar 

  29. 29.

    G. Wang, Y. Meng, L. Wang, J. Xia, F. Zhu, and Y. Zhang, Int. J. Electrochem. Sci. 12, 2618 (2017).

    Article  Google Scholar 

  30. 30.

    M. Aghazadeh, and M. Aghazadeh, Int. J. Electrochem. Sci. 11, 11002. (2016).

    Article  Google Scholar 

  31. 31.

    Y. Zhang, Y. Wang, Z. Xiong, Y. Hu, W. Song, Q.-A. Huang, X. Cheng, L.-Q. Chen, C. Sun, and H. Gu, ACS Omega 2, 3. (2017).

    Google Scholar 

  32. 32.

    J. Wu, I. Byrd, C. Jin, J. Li, H. Chen, T. Camp, R. Bujol, A. Sharma, and H. Zhang, ChemElectroChem 4, 5. (2017).

    Google Scholar 

  33. 33.

    N. Wu, W. Du, G. Liu, Z. Zhou, H.-R. Fu, Q. Tang, X. Liu, Y.-B. He, and A.C.S. Appl, Mater. Interfaces 9, 50. (2017).

    Google Scholar 

  34. 34.

    Y. Zhu, M. Yang, Q. Huang, D. Wang, R. Yu, J. Wang, Z. Zheng, and D. Wang, Adv. Mater. 32, 7. (2020).

    Google Scholar 

Download references

Acknowledgements

Authors thank to Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials for their experimental platform and testing conditions. This work was supported by the National Natural Science Foundation of China (No. 52073166), the Scientific Research Startup Program for Introduced Talents of Shaanxi University of Technology (No. SLGRCQD2025), the Xi’an Key Laboratory of Green Manufacture of Ceramic Materials Foundation (No. 2019220214SYS017CG039), the Key Program for International S&T Cooperation Projects of Shaanxi Province (2020KW-038,2020GHJD-04), Science and Technology Program of Xi'an, China (2020KJRC0009) and Scientific Research Program Funded by Shaanxi Provincial Education Department (No. 20JY001), Science and Technology Resource Sharing Platform of Shaanxi Province (2020PT-022).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Liyun Cao or Koji Kajiyoshi.

Ethics declarations

Conflict of interest

The corresponding authors declare no conflict of interest. There are no interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 417 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kou, L., Cao, L., Song, J. et al. Cobalt-doped Vanadium Pentoxide Microflowers as Superior Cathode for Lithium-Ion Battery. JOM (2021). https://doi.org/10.1007/s11837-020-04552-3

Download citation