Electrodeposition of Duplex Ni–B–Zn/Co Composite Coatings

Abstract

This research article focusses on the Ni–B–Zn/Co composite coatings synthesized via an electrodeposition process. Electrodeposited Ni–B composite coatings have several advantages, such as excellent corrosion as well as wear resistance and high hardness in the as-deposited condition. We studied the influence of Zn/Co addition on microstructure, phase evolution, mechanical (hardness and wear resistance), and corrosion behavior of electrodeposited Ni–B–Zn/Co composite coatings. The Ni–B–Zn/Co composite coatings exhibited significant improvements in microhardness (by 90%) as well as in elastic modulus (by 100%) in comparison with electrodeposited Ni–B coatings. Both scanning electron microscopy (SEM) and x-ray diffraction (XRD) analyses showed significant improvement in grain sizes in Ni–B–Zn/Co composite coatings compared with Ni–B coatings. This grain refinement in composite coatings is primarily attributed to the addition as well as uniform dispersion of Zn/Co within the Ni–B matrix. The Ni–B–Zn/Co coatings exhibited far better corrosion resistance and mechanical properties than Ni–B coatings.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    K. Krishnaveni, T.S.N. Sankara Narayanan, and S.K. Seshadri, Mater. Chem. Phys. 99, 300 (2006).

    Article  Google Scholar 

  2. 2.

    G. Krauss, J. Heat. Treat. 9, 81 (1992).

    Article  Google Scholar 

  3. 3.

    S. Adachi and N. Ueda, Adv. Powder Technol. 24, 818 (2013).

    Article  Google Scholar 

  4. 4.

    A. Zhecheva, W. Sha, S. Malinov, and A. Long, Surf. Coatings Technol. 200, 2192 (2005).

    Article  Google Scholar 

  5. 5.

    E. Czarnowska, T. Wierzchoń, A. Maranda-Niedbała, and E. Karczmarewicz, J. Mater. Sci. Mater. Med. 11, 73 (2000).

    Article  Google Scholar 

  6. 6.

    D. Hömberg, Nonlinear Anal. Real World Appl. 5, 55 (2004).

    MathSciNet  Article  Google Scholar 

  7. 7.

    G. Purcek, O. Saray, F. Rubitschek, T. Niendorf, H.J. Maier, and I. Karaman, Acta Mater. 59, 7683 (2011).

    Article  Google Scholar 

  8. 8.

    J.S. Selvan, K. Subramanian, and A.K. Nath, J. Mater. Process. Technol. 91, 29 (1999).

    Article  Google Scholar 

  9. 9.

    K. Reichelt and X. Jiang, Thin Solid Films 191, 91 (1990).

    Article  Google Scholar 

  10. 10.

    M.K. Lee, G.H. Kim, K.H. Kim, and W.W. Kim, J. Mater. Process. Technol. 176, 140 (2006).

    Article  Google Scholar 

  11. 11.

    K.L. Choy, Prog. Mater Sci. 48, 57 (2003).

    Article  Google Scholar 

  12. 12.

    A.R. Boccaccini and I. Zhitomirsky, Int. Ceram. Rev. 54, 242 (2005).

    Google Scholar 

  13. 13.

    V. Vitry, A. Sens, A.F. Kanta, and F. Delaunois, Surf. Coatings Technol. 206, 3421 (2012).

    Article  Google Scholar 

  14. 14.

    P. Sahoo and S.K. Das, Mater. Des. 32, 1760 (2011).

    Article  Google Scholar 

  15. 15.

    J.A. Calderón, J.P. Jiménez, and A.A. Zuleta, Surf. Coatings Technol. 304, 167 (2016).

    Article  Google Scholar 

  16. 16.

    T.S.N. Sankara Narayanan and S.K. Seshadri, J. Alloys Compd. 365, 197 (2004).

    Article  Google Scholar 

  17. 17.

    A.M. Alexander and J.S.J. Hargreaves, Chem. Soc. Rev. 39, 4388 (2010).

    Article  Google Scholar 

  18. 18.

    I. Baskaran, R. Sakthi Kumar, T.S.N. Sankara Narayanan, and A. Stephen, Surf. Coatings Technol. 200, 6888 (2006).

    Article  Google Scholar 

  19. 19.

    J.L. Ortiz-Aparicioa, Y. Measa, G. Trejoa, R. Ortegaa, T.W. Chapmana, E. Chainetb, and P. Ozilb, Electrochim. Acta 52, 4742 (2007).

    Article  Google Scholar 

  20. 20.

    P.L. Cavallotti, L. Nobili, and A. Vicenzo, Electrochim. Acta 50, 4557 (2005).

    Article  Google Scholar 

  21. 21.

    J.D. Jensen, D.R. Gabe, and G.D. Wilcox, Surf. Coatings Technol. 105, 240 (1998).

    Article  Google Scholar 

  22. 22.

    L.F. Senna, S.L. Díaz, and L. Sathler, J. Appl. Electrochem. 33, 1155 (2003).

    Article  Google Scholar 

  23. 23.

    A.P. Abbott, G. Capper, K.J. McKenzie, and K.S. Ryder, J. Electroanal. Chem. 599, 288 (2007).

    Article  Google Scholar 

  24. 24.

    N. Boshkov, Surf. Coatings Technol. 172, 217 (2003).

    Article  Google Scholar 

  25. 25.

    M.M. Abou-Krisha, H.M. Rageh, and E.A. Matter, Surf. Coatings Technol. 202, 3739 (2008).

    Article  Google Scholar 

  26. 26.

    N. Eliaz, K. Venkatakrishna, and A.C. Hegde, Surf. Coatings Technol. 205, 1969 (2010).

    Article  Google Scholar 

  27. 27.

    Y. Wang, S.J. Wang, X. Shu, W. Gao, W. Lu, and B. Yan, J. Alloys Compd. 617, 472 (2014).

    Article  Google Scholar 

  28. 28.

    R.A. Shakoor, U.S. Waware, R. Kahraman, A. Popelka, and M.M. Yusuf, Int. J. Electrochem. Sci. 12, 4384 (2017).

    Article  Google Scholar 

  29. 29.

    R.A. Shakoor, R. Kahraman, U. Waware, Y. Wang, and W. Gao, Mater. Des. 64, 127 (2014).

    Article  Google Scholar 

  30. 30.

    R.A. Shakoor, R. Kahraman, U.S. Waware, Y. Wang, and W. Gao, Int. J. Electrochem. Sci. 10, 2110 (2015).

    Google Scholar 

  31. 31.

    R.A. Shakoor, R. Kahraman, U.S. Waware, Y. Wang, and W. Gao, Mater. Des. 59, 421 (2014).

    Article  Google Scholar 

  32. 32.

    J.N. Balaraju, S.K. Seshadri, M.S. Division, N.A. Laboratories, and M. Centre, J. Appl. Electrochem. 33, 807 (2003).

    Article  Google Scholar 

  33. 33.

    K. Krishnaveni, T.S.N. Sankara Narayanan, and S.K. Seshadri, Surf. Coatings Technol. 190, 115 (2005).

    Article  Google Scholar 

  34. 34.

    T. Saito, E. Sato, M. Matsuoka, and C. Iwakura, J. Appl. Electrochem. 28, 559 (1998).

    Article  Google Scholar 

  35. 35.

    T.S.N. Sankara-Narayanan, A. Stephan, and S. Guruskanthan, Surf. Coatings Technol. 179, 56–62 (2004).

    Article  Google Scholar 

  36. 36.

    R.A. Shakoor, R. Kahraman, U.S. Waware, Y. Wang, and W. Gao, Int. J. Electrochem. Sci. 9, 5520 (2014).

    Google Scholar 

  37. 37.

    B. Li, W. Zhang, Y. Huan, and J. Dong, Surf. Coatings Technol. 337, 186 (2018).

    Article  Google Scholar 

  38. 38.

    K. Krishnaveni, T.S.N. Sankara Narayanan, and S.K. Seshadri, J. Alloys Compd. 466, 412 (2008).

    Article  Google Scholar 

  39. 39.

    K.H. Lee, D. Chang, and S.C. Kwon, Electrochim. Acta 50, 4538 (2005).

    Article  Google Scholar 

  40. 40.

    S. Yuan, S.O. Pehkonen, B. Liang, Y.P. Ting, K.G. Neoh, and E.T. Kang, Corros. Sci. 53, 2738 (2011).

    Article  Google Scholar 

  41. 41.

    A. Laszczyńska, J. Winiarski, B. Szczygieł, and I. Szczygieł, Appl. Surf. Sci. 369, 224 (2016).

    Article  Google Scholar 

  42. 42.

    Z.F. Lodhi, J.M.C. Mol, A. Hovestad, L’t. Hoen-Velterop, H. Terryn, and J.H.W. de Wit, Surf Coatings Technol. 203, 1415 (2009).

    Article  Google Scholar 

  43. 43.

    T.S.N. Sankara-Narayanan, A. Stephan, and S. Guruskanthan, Surf. Coatings Technol. 179, 56 (2004).

    Article  Google Scholar 

  44. 44.

    W. Chen, W. Gao, and Y. He, Surf. Coatings Technol. 204, 2493 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Qatar University for use of their facilities and financial support.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Umesh Somaji Waware or Tushar Borkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Walunj, G., Waware, U.S., Hamouda, A.M.S. et al. Electrodeposition of Duplex Ni–B–Zn/Co Composite Coatings. JOM (2020). https://doi.org/10.1007/s11837-020-04247-9

Download citation