Skip to main content
Log in

Influence of In Situ Titanium Diboride Particulate Reinforcement on Mechanical Properties of Aluminum–Silicon Based Metal Matrix Composites

  • Metal Matrix Composites: Analysis, Modeling, Observations and Interpretations
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Aluminum–silicon alloy reinforced with titanium diboride particles (2 wt.%, 5 wt.%, and 7 wt.%) were successfully synthesized using a stir-casting method. Dipotassium titanium hexafluoride and potassium tetrafluoroborate salts were used to obtain an in situ titanium diboride phase in a molten matrix. These in situ composites have shown significant improvements in their mechanical properties, such as Young’s modulus, yield strength, ultimate tensile strength and micro-hardness compared to the base alloy. X-ray diffraction patterns of the obtained metal matrix composites confirms the formation of titanium diboride particles. The microstructures were studied using field-emission scanning electron microscopy. The in situ-formed titanium diboride particles were found uniformly distributed with good interfacial bonding. Reinforcement particles were predominantly in cubical, spherical, and hexagonal shapes. The fracture surfaces of the composites contained fine dimples, and some microcracks were generated and propagated through cleavage or facet zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Macke, B. F. Schultz, and P. Rohatgi, in Advanced Materials and Processes (Almere: ASM International, 2012), pp. 19–23.

  2. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge, Mater. Sci. Eng., A 280, 37 (2000).

    Article  Google Scholar 

  3. T.S. Srivatsan and V.K. Vasudevan, JOM 51, 42 (1999).

    Article  Google Scholar 

  4. G.S. Cole and A.M. Sherman, Mater. Charact. 35, 3 (1995).

    Article  Google Scholar 

  5. A. Kumar, M.M. Mahapatra, P.K. Jha, N.R. Mandal, and V. Devuri, Mater. Des. 59, 406 (2014).

    Article  Google Scholar 

  6. S.L. Pramod, S.R. Bakshi, and B.S. Murty, J. Mater. Eng. Perform. 24, 2185 (2015).

    Article  Google Scholar 

  7. A. Baradeswaran and A. Elaya Perumal, Compos. Part B 54, 146 (2013).

    Article  Google Scholar 

  8. F. Saba, F. Zhang, S. Liu, and T. Liu, Compos. Part B 167, 7 (2019).

    Article  Google Scholar 

  9. S.V. Sujith and R.S. Mulik, J. Alloys Compd. 812, 152131 (2020).

    Article  Google Scholar 

  10. W.O. Soboyejo and T.S. Srivatsan, Advanced Structural Materials: Properties, Design Optimization, and Applications (Boca Raton: CRC, 2006).

    Book  Google Scholar 

  11. T.S. Srivatsan and J. Lewandowski, Advanced Structural Materials: Properties, Design Optimization, and Applications, ed. W.O. Soboyejo and T.S. Srivatsan (Boca Raton: CRC, 2006), pp. 275–357.

    Chapter  Google Scholar 

  12. M.K. Surappa, Sadhana 28, 319 (2003).

    Article  Google Scholar 

  13. B. Ralph, H.C. Yuen, and W.B. Lee, J. Mater. Process. Technol. 63, 339 (1997).

    Article  Google Scholar 

  14. T.S. Srivatsan, J. Mater. Sci. 31, 1375 (1996).

    Article  Google Scholar 

  15. L.C. Davis, C. Andres, and J.E. Allison, Mater. Sci. Eng., A 249, 40 (1998).

    Article  Google Scholar 

  16. A. Kumar, P.K. Jha, and M.M. Mahapatra, J. Mater. Eng. Perform. 23, 743 (2014).

    Article  Google Scholar 

  17. J. Hemanth, Wear 258, 1732 (2005).

    Article  Google Scholar 

  18. N. Kumar, G. Gautam, R.K. Gautam, A. Mohan, and S. Mohan, Tribol. Int. 97, 313 (2016).

    Article  Google Scholar 

  19. B.S.S. Daniel, V.S.R. Murthy, and G.S. Murty, J. Mater. Process. Technol. 68, 132 (1997).

    Article  Google Scholar 

  20. J. Karloopia, S. Mozammil, and P. Jha, J. Compos. Sci. 3, 28 (2019).

    Article  Google Scholar 

  21. A. Kennedy, A. Karantzalis, and S. Wyatt, J. Mater. Sci. 4, 933 (1999).

    Article  Google Scholar 

  22. K.K. Chawla, Composite Materials: Science and Engineering, 3rd ed. (New York: Springer, 2012).

    Book  Google Scholar 

  23. S. Morankar, M. Mandal, N. Kourra, M.A. Williams, R. Mitra, and P. Srirangam, JOM 71, 4050 (2019).

    Article  Google Scholar 

  24. H. Yi, N. Ma, X. Li, Y. Zhang, and H. Wang, Mater. Sci. Eng., A 419, 12 (2006).

    Article  Google Scholar 

  25. B.S. Yigezu, P.K. Jha, and M.M. Mahapatra, Mater. Manuf. Process. 28, 969 (2013).

    Google Scholar 

  26. S. Mozammil, J. Karloopia, R. Verma, and P.K. Jha, J. Alloys Compd. 826, 17 (2020).

    Article  Google Scholar 

  27. S. Kumar, V. Subramanya sarma, and B.S. Murty, J. Alloys Compd. 479, 268 (2009).

    Article  Google Scholar 

  28. L. Zhang, J. Gao, M. Huang, and E. Wang, JOM 71, 4144 (2019).

    Article  Google Scholar 

  29. S. Lakshmi, L. Lu, and M. Gupta, J. Mater. Process. Technol. 73, 160 (1998).

    Article  Google Scholar 

  30. Q. Yang, D.L. Cheng, J. Liu, L. Wang, Z. Chen, M.L. Wang, S.Y. Zhong, Y. Wu, G. Ji, and H.W. Wang, Mater. Charact. 155, 109834 (2019).

    Article  Google Scholar 

  31. Y.M. Youssef, R.J. Dashwood, and P.D. Lee, Compos. Part A 36, 747 (2005).

    Article  Google Scholar 

  32. J. Karloopia, S. Mozammil, and P.K. Jha, Mater. Today Proc. 5, 17260 (2018).

    Article  Google Scholar 

  33. S. Mozammil, J. Karloopia, R. Verma, and P.K. Jha, J. Alloys Compd. 793, 454 (2019).

    Article  Google Scholar 

  34. X. Wang, R. Brydson, A. Jha, and J. Ellis, J. Microsc. 196, 137 (1999).

    Article  Google Scholar 

  35. T. Wang, Z. Chen, Y. Zheng, Y. Zhao, H. Kang, and L. Gao, Mater. Sci. Eng., A 605, 22 (2014).

    Article  Google Scholar 

  36. C.S. Kim, I. Sohn, M. Nezafati, J.B. Ferguson, B.F. Schultz, Z. Bajestani-Gohari, P.K. Rohatgi, and K. Cho, J. Mater. Sci. 48, 4191 (2013).

    Article  Google Scholar 

  37. C.S. Ramesh, S. Pramod, and R. Keshavamurthy, Mater. Sci. Eng., A 528, 4125 (2011).

    Article  Google Scholar 

  38. T.P.D. Rajan, R.M. Pillai, B.C. Pai, K.G. Satyanarayana, and P.K. Rohatgi, Compos. Sci. Technol. 67, 3369 (2007).

    Article  Google Scholar 

  39. F. Toptan, A. Kilicarslan, A. Karaaslan, M. Cigdem, and I. Kerti, Mater. Des. 31, S87 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimmy Karloopia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karloopia, J., Mozammil, S. & Jha, P.K. Influence of In Situ Titanium Diboride Particulate Reinforcement on Mechanical Properties of Aluminum–Silicon Based Metal Matrix Composites. JOM 72, 2927–2936 (2020). https://doi.org/10.1007/s11837-020-04245-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04245-x

Navigation