Fabrication and Antibacterial Properties of Silver/Graphite Oxide/Chitosan and Silver/Reduced Graphene Oxide/Chitosan Nanocomposites


Silver/graphite oxide/chitosan and silver/reduced graphene oxide/chitosan organic–inorganic nanocomposite materials have been synthesized by a precipitation procedure using graphite oxide or reduced graphene oxide acting as stabilizer, silver acetate as Ag0 precursor, sodium hydroxide as reducing medium, and chitosan as covering agent. The synthesized nanomaterials were thoroughly characterized and their antibacterial efficacy investigated in detail, in comparison with chitosan, graphite oxide, reduced graphene oxide, silver/graphite oxide, and silver/reduced graphene oxide, against Gram-positive bacterium Corynebacterium glutamicum and Gram-negative bacterium Escherichia coli strain DH5α, over durations of 8 h and 20 h. The results confirmed that the prepared nanocomposites exhibited broad-spectrum antibacterial activity against the two bacteria. Five μL (2 g/L) of the nanocomposite samples efficiently reduced the number of bacteria from 108 colony-forming units (CFU)/mL to zero. The chitosan layer did not prevent release of Ag from the nanocomposites, demonstrating their potential use as biocidal materials for different applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    P. Chanpiwat, S. Sthiannopkao, K. Widmer, S. Himeno, H. Miyataka, N.U. Vu, W. Tran, and T.T. Pham, Chemosphere 163, 342 (2016).

    Article  Google Scholar 

  2. 2.

    A. Robert, Y. Nguyen, O. Bajolet, B. Vuillemin, B. Defoin, V. Vernet-Garnier, M. Drame, and F. Bani-Sadr, Med. Mal. Infect. 47, 142 (2016).

    Article  Google Scholar 

  3. 3.

    H. Yılmaz Atay and E. Çelik, Prog. Org. Coat. 102, 194 (2017).

    Article  Google Scholar 

  4. 4.

    F. Ashouri, A.R. Faraji, S. Molaeian, M.A. Fall, and R.A. Butcher, J. Mol. Struct. 1204, 127483 (2020).

    Article  Google Scholar 

  5. 5.

    A. Zaharia, V. Muşat, V. Pleşcan Ghisman, and N. Baroiu, Eur. Polym. J. 84, 550 (2016).

    Article  Google Scholar 

  6. 6.

    H. Zhang, S. Yun, L. Song, Y. Zhang, and Y. Zhao, Int. J. Biol. Macromol. 96, 334 (2017).

    Article  Google Scholar 

  7. 7.

    Y. Luo, Z. Zhou, and T. Yue, Food Chem. 221, 317 (2017).

    Article  Google Scholar 

  8. 8.

    I.C. Libio, R. Demori, M.F. Ferrão, M.I.Z. Lionzo, and N.P. da Silveira, Mater. Sci. Eng. C 67, 115 (2016).

    Article  Google Scholar 

  9. 9.

    D.Y. Wu, Y. Ma, X.S. Hou, W.J. Zhang, P. Wang, H. Chen, B. Li, C. Zhang, and Y. Ding, Carbohydr. Polym. 157, 1470 (2017).

    Article  Google Scholar 

  10. 10.

    U. Siripatrawan and W. Vitchayakitti, Food Hydrocolloid 61, 695 (2016).

    Article  Google Scholar 

  11. 11.

    J. Li, Y. Wu, and L. Zhao, Carbohydr. Polym. 148, 200 (2016).

    Article  Google Scholar 

  12. 12.

    Z. Lu, J. Gao, Q. He, J. Wu, D. Liang, H. Yang, and R. Chen, Carbohydr. Polym. 156, 460 (2017).

    Article  Google Scholar 

  13. 13.

    R. Krishnaveni and S. Thambidurai, Ind. Crop. Prod. 47, 160 (2013).

    Article  Google Scholar 

  14. 14.

    A.M. El-Nahrawy, A.I. Ali, A.B. Abou Hammad, and A.M. Youssef, Int. J. Biol. Macromol. 93, 267 (2016).

    Article  Google Scholar 

  15. 15.

    Y. Su, X. Zheng, A. Chen, Y. Chen, G. He, and H. Chen, Chem. Eng. J. 279, 47 (2015).

    Article  Google Scholar 

  16. 16.

    M.Y. Lim, Y.S. Choi, J. Kim, K. Kim, H. Shin, J.J. Kim, D.M. Shin, and J.C. Lee, J. Memb. Sci. 521, 1 (2017).

    Article  Google Scholar 

  17. 17.

    M. Moghayedi, E.K. Goharshadi, K. Ghazvini, H. Ahmadzadeh, R. Ludwig, and M. Namayandeh-Jorabchi, Mater. Chem. Phys. 188, 58 (2017).

    Article  Google Scholar 

  18. 18.

    X. Ye, J. Feng, J. Zhang, X. Yang, X. Liao, Q. Shi, and S. Tan, Colloids Surf. B 149, 322 (2017).

    Article  Google Scholar 

  19. 19.

    X.F. Sun, J. Qin, P.F. Xia, B.B. Guo, C.M. Yang, C. Song, and S.G. Wang, Chem. Eng. J. 281, 53 (2015).

    Article  Google Scholar 

  20. 20.

    S. Zhou, H. Ji, Y. Fu, Y. Yang, and C. Lu, Appl. Surf. Sci., In press (2019)

  21. 21.

    E. Aktan, A.B. Gündüzalp, and Ü.Ö. Özmen, J. Mol. Struct. 1128, 775 (2017).

    Article  Google Scholar 

  22. 22.

    Y. Wang, J. Ma, Q. Xu, and J. Zhang, Mater. Des. 113, 240 (2017).

    Article  Google Scholar 

  23. 23.

    A. Wanag, P. Rokicka, E. Kusiak- Nejman, A. Markowska-Szczupak, and A.W. Morawski, Mater. Lett. 185, 264 (2016).

    Article  Google Scholar 

  24. 24.

    B.C. Kim, E. Jeong, E. Kim, and S.W. Hong, Appl. Catal. B 242, 194 (2019).

    Article  Google Scholar 

  25. 25.

    C. Li, X. Wang, F. Chen, C. Zhang, X. Zhi, K. Wang, and D. Cui, Biomaterials 34, 3882 (2013).

    Article  Google Scholar 

  26. 26.

    S. Colonna, O. Monticelli, J. Gomez, C. Novara, G. Saracco, and A. Fina, Polymer 102, 292 (2016).

    Article  Google Scholar 

  27. 27.

    Y. Zhou, J. Yang, T. He, H. Shi, X. Cheng, and Y. Lu, Small 9, 3445 (2013).

    Article  Google Scholar 

  28. 28.

    H. Liu, X. Liu, F. Zhao, Y. Liu, L. Liu, L. Wang, C. Geng, and P. Huang, J. Colloid Interface Sci. 562, 182 (2020).

    Article  Google Scholar 

  29. 29.

    S. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, and Y. Chen, ACSNano 5, 6971 (2011).

    Google Scholar 

  30. 30.

    Y. He and H. Cui, J. Mater. Chem. 22, 9086 (2012).

    Article  Google Scholar 

  31. 31.

    V. Vatanpour, A. Shockravi, H. Zarrabi, Z. Nikjavan, and A. Javadi, J. Ind. Eng. Chem. 30, 342 (2015).

    Article  Google Scholar 

  32. 32.

    P.C. Ray, H. Yu, and P.P. Fu, J. Environ. Sci. Health C 27, 1 (2009).

    Article  Google Scholar 

  33. 33.

    R. Goy, D. Britto, O. Agropecuária, and S. Carlos, Polymeros 19, 241 (2009).

    Article  Google Scholar 

  34. 34.

    O. Cota-Arriola, M.O. Cortez-Rocha, A. Burgos-Hernandez, J.M. Ezquerra-Brauer, and M. Plascencia-Jatomea, J. Sci. Food Agric. 93, 1525 (2013).

    Article  Google Scholar 

  35. 35.

    J. Kingkaew, S. Kirdponpattara, N. Sanchavanakit, P. Pavasant, and M. Phisalaphong, Biotechnol. Bioprocess Eng. 19, 534 (2014).

    Article  Google Scholar 

  36. 36.

    M. Keshvardoostchokami, P. Bigverdi, A. Zamani, A. Parizanganeh, and F. Piri, Environ. Sci. Pollut. R 25, 6751 (2018).

    Article  Google Scholar 

  37. 37.

    S. Keshan Balavandy, K. Shameli, and Z. Zainal Abidin, Int. J. Electrochem. Sci. 10, 486 (2015).

    Google Scholar 

  38. 38.

    Q. Bao, D. Zhang, and P. Qi, J. Colloid Interface Sci. 360, 463 (2011).

    Article  Google Scholar 

  39. 39.

    N.I. Ikhsan, P. Rameshkumar, A. Pandikumar, M.M. Shahid, N.M. Huang, S. Vijay Kumar, and H.N. Lim, Talanta 144, 908 (2015).

    Article  Google Scholar 

  40. 40.

    Y. Guo, X. Sun, Y. Liu, W. Wang, H. Qiu, and J. Gao, Carbon 50, 2513 (2012).

    Article  Google Scholar 

  41. 41.

    H. Jiang, P. Chen, S. Luo, and X. Tu, Appl. Surf. Sci. 284, 942 (2013).

    Article  Google Scholar 

  42. 42.

    H.L. Zheng, S.S. Yang, J. Zhao, and Z.C. Zhang, Appl. Phys. A 114, 801 (2014).

    Article  Google Scholar 

  43. 43.

    X. Zeng, D.T. McCarthy, A. Deletic, and X. Zhang, Int. J. Sci. Technol. 10, 93 (2015).

    Google Scholar 

  44. 44.

    S. Dutta, C. Ray, S. Sarkar, M. Pradhan, Y. Negishi, T. Pal, and A.C.S. Appl, Mater. Interfaces 5, 8724 (2013).

    Article  Google Scholar 

  45. 45.

    H.V. Tran, L.D. Tran, and T.N. Nguyen, Mater. Sci. Eng. C 30, 304 (2010).

    Article  Google Scholar 

  46. 46.

    D. De Britto and S.P. Campana-Filho, Thermochim. Acta 465, 73 (2007).

    Article  Google Scholar 

  47. 47.

    F.A. Lopez, A.L.R. Merce, F.J. Alguacil, and A. Lopez-Delgado, J. Therm. Anal. Calorim. 91, 633 (2008).

    Article  Google Scholar 

  48. 48.

    M. Zeng, Z. Fang, and C. Xu, J. Memb. Sci. 230, 175 (2004).

    Article  Google Scholar 

  49. 49.

    W.Y. Chuang, T.H. Young, C.H. Yao, and W.Y. Chiu, Biomaterials 20, 1479 (1999).

    Article  Google Scholar 

  50. 50.

    D.S. Vicentini, A. Smania, and M.C.M. Laranjeira, Mater. Sci. Eng., C 30, 503 (2010).

    Article  Google Scholar 

  51. 51.

    Y. Haldorai and J.J. Shim, Compos. Interfaces 20, 365 (2013).

    Article  Google Scholar 

  52. 52.

    A.M. Pandele, S. Dinescu, M. Costache, E. Vasile, C. Obreja, H. Iovu, and M. Ionita, Polym. Compos. 34, 2116 (2013).

    Article  Google Scholar 

  53. 53.

    E.A. El-Hefian, M.M. Nasef, and A.H. Yahaya, E-J. Chem. 7, 1212 (2010).

    Article  Google Scholar 

  54. 54.

    M. Busila, V. Musat, T. Textor, and B. Mahltig, RSC Adv. 5, 21562 (2015).

    Article  Google Scholar 

  55. 55.

    J. Qiu, D. Wang, H. Geng, J. Guo, S. Qian, and X. Liu, Adv. Mater. Interfaces 1700228, 1 (2017).

    Google Scholar 

  56. 56.

    H.K. No, N.Y. Park, S.H. Lee, and S.P. Meyers, Int. J. Food Microbiol. 74, 65 (2002).

    Article  Google Scholar 

  57. 57.

    J. Tang, Q. Chen, L. Xu, S. Zhang, L. Feng, L. Cheng, H. Xu, Z. Liu, and R. Peng, A.C.S. Appl. Mater. Interfaces 5, 3867 (2013).

    Article  Google Scholar 

  58. 58.

    J. Ma, J. Zhang, Z. Xiong, Y. Yong, and X. Zhao, J. Mater. Chem. 21, 3350 (2011).

    Article  Google Scholar 

  59. 59.

    I. Sheet, H. Holail, Z. Olama, A. Kabbani, and M. Hines, Int. J. Curr. Microbiol. Appl. Sci. 2, 1 (2013).

    Google Scholar 

  60. 60.

    M. Azam Ansari, H. Manzoor Khan, A. Ahmed Khan, M. KaleemAhmad, A.A. Mahdi, R. Pal, and S. Singh Cameotra, J. Basic Microbiol. 53, 905 (2013).

    Google Scholar 

  61. 61.

    D. Gao, Y. Li, B. Lyu, L. Lyu, S. Chen, and J. Ma, Carbohydr. Polym. 204, 161 (2019).

    Article  Google Scholar 

  62. 62.

    N. Duran, M. Duran, M. Jesus, A. Seabra, W. Favaro, and G. Nakazato, Nanomedicine 12, 789 (2015).

    Article  Google Scholar 

  63. 63.

    R. Rawashdeh and Y. Haik, Antibacterial mechanisms of metallic nanoparticles: a review (Ikenobe: Global Science Books, 2009), pp. 12–20.

    Google Scholar 

Download references


The authors declare that they have no conflicts of interest. This research did not receive any specific grants from funding agencies in the public, commercial, or not-for-profit sectors.

Author information



Corresponding author

Correspondence to Mina Keshvardoostchokami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Keshvardoostchokami, M., Piri, F., Jafarian, V. et al. Fabrication and Antibacterial Properties of Silver/Graphite Oxide/Chitosan and Silver/Reduced Graphene Oxide/Chitosan Nanocomposites. JOM (2020). https://doi.org/10.1007/s11837-020-04243-z

Download citation