A Review of the Comprehensive Recovery of Valuable Elements from Copper Smelting Open-Circuit Dust and Arsenic Treatment

Abstract

Copper smelting open-circuit (CSO) dust contains various valuable metals, such as copper, lead, and zinc, as well as undesirable toxic elements such as arsenic. Thus, the comprehensive recovery of valuable elements from CSO dust is highly significant from both economic and environmental perspectives. In this review, pyrometallurgical, pyrohydrometallurgical and hydrometallurgical processes are evaluated after the presentation of the formation mechanism and characterization of CSO dust. Hydrometallurgical processing is more suitable for treating the dust because of its low energy consumption, high metal recovery, and no secondary pollution. After the introduction of valuable metal recovery by cementation, sulfuration precipitation, and solvent extraction from CSO dust leaching solution, arsenic removal from the solution by lime, sulfides, iron salts, and natroalunite precipitations was reviewed. Arsenical natroalunite has excellent long-term stability, so natroalunite precipitation is very promising for arsenic immobilization.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    J. Chen, Z. Wang, Y. Wu, L. Li, B. Li, D.A. Pan, and T. Zuo, Resour. Conserv. Recyc. 146, 35 (2019).

    Article  Google Scholar 

  2. 2.

    P.R. Taylor and T.A. Putra, Pyrometallurgical Processing Technologies for Treating High Arsenic Copper Concentrates, Celebrating the Megascale (New York: Wiley, 2014), pp. 197–211.

    Google Scholar 

  3. 3.

    M. Wang, W. Chen, Y. Zhou, and X. Li, Resour. Policy 52, 235 (2017).

    Article  Google Scholar 

  4. 4.

    D. Filippou and G.P. Demopoulos, JOM 49, 52 (1997).

    Article  Google Scholar 

  5. 5.

    T.K. Ha, B.H. Kwon, K.S. Park, and D. Mohapatra, Sep. Purif. Technol. 142, 116 (2015).

    Article  Google Scholar 

  6. 6.

    A.M. Nazari, R. Radzinski, and A. Ghahreman, Hydrometallurgy 174, 258 (2017).

    Article  Google Scholar 

  7. 7.

    T. Yang, X. Fu, W. Liu, L. Chen, and D. Zhang, JOM 69, 1982 (2017).

    Article  Google Scholar 

  8. 8.

    R.-L. Zhang, K.-Q. Qiu, Y.-J. Xie, Y.-M. Hong, and C.-D. Zheng, J Cent. South Univ. (Sci. Technol.) 37, 73 (2006).

    Google Scholar 

  9. 9.

    C. Mulale, M. Mwema, and G. Mashala, Retreatment of dust waste from the copper smelter and converter, global symposium on recycling (Waste Treatment and Clean Technology, 1999), pp. 1.201-201.208.

  10. 10.

    W. Chen, Q. Sheng, D. Wang, Z. Zhang, and G. Chen, Non-ferr. Min. Metall. 3, 45 (2003).

    Google Scholar 

  11. 11.

    J.-J. Ke, R.-Y. Qiu, and C.-Y. Chen, Hydrometallurgy 12, 217 (1984).

    Article  Google Scholar 

  12. 12.

    X. Hou, Y. Zhang, and X. Zhang, Hydrometall. China 30, 57 (2011).

    Google Scholar 

  13. 13.

    V. Montenegro, H. Sano, and T. Fujisawa, Miner. Eng. 49, 184 (2013).

    Article  Google Scholar 

  14. 14.

    F. Bakhtiari, H. Atashi, M. Zivdar, and S.S. Bagheri, Int. J. Miner. Process. 86, 50 (2008).

    Article  Google Scholar 

  15. 15.

    F. Bakhtiari, M. Zivdar, H. Atashi, and S.S. Bagheri, Hydrometallurgy 90, 40 (2008).

    Article  Google Scholar 

  16. 16.

    W.-F. Liu, X.-X. Fu, T.-Z. Yang, D.-C. Zhang, and L. Chen, Trans. Nonferr. Met. Soc. China 28, 1854 (2018).

    Article  Google Scholar 

  17. 17.

    Y. Shi, D. Liu, S. Yao, and B. Zhang, in: China Association for Science and Technology Annual Meeting—10 National Heavy Nonferrous Metallurgy Technology Exchange Conference (2014).

  18. 18.

    D. Okanigbe and A. Adeleke, Proc. Manuf. 7, 121 (2017).

    Google Scholar 

  19. 19.

    A.B. Vakylabad, M. Schaffie, M. Ranjbar, Z. Manafi, and E. Darezereshki, J Hazard. Mater. 241–242, 197 (2012).

    Article  Google Scholar 

  20. 20.

    A. Morales, M. Cruells, A. Roca, and R. Bergo, in Dutrizac International Symposium on Copper Hydrometallurgy, ed. PA Riveros, DG Dixon, DB Dreisinger and MJ Collins, 2007, pp. 177–189.

  21. 21.

    E. Balladares, U. Kelm, S. Helle, R. Parra, and E. Araneda, Dyna 81, 11 (2014).

    Article  Google Scholar 

  22. 22.

    C. Samuelsson and G. Carlsson, CIM Bull. 94, 111 (2001).

    Google Scholar 

  23. 23.

    A.B. Vakylabad, M. Schaffie, M. Ranjbar, Z. Manafi, and E. Darezereshki, J Hazard. Mater. 30, 197 (2012).

    Article  Google Scholar 

  24. 24.

    H. Li, Yunnan Metall. 40, 1006 (2011).

    Google Scholar 

  25. 25.

    H. Yuan, Yunnan Metall. 40, 29 (2011).

    Google Scholar 

  26. 26.

    V.I. Ermakov, Tsvetnye Metally. 12, 26 (1979).

    Google Scholar 

  27. 27.

    S. Liu, J. Li, W. Meng, S. Feng, and D. Tang, Phosphate Fertil. Compd. Fertil. 24, 64 (2009).

    Google Scholar 

  28. 28.

    H. Altundogan and F. Tümen, Hydrometallurgy 44, 261 (1997).

    Article  Google Scholar 

  29. 29.

    L. Sukla, S. Panda, and P. Jena, Hydrometallurgy 16, 153 (1986).

    Article  Google Scholar 

  30. 30.

    F. Tümen and N.T. Bailey, Hydrometallurgy 25, 317 (1990).

    Article  Google Scholar 

  31. 31.

    A. Shibayama, Y. Takasaki, T. William, A. Yamatodani, Y. Higuchi, S. Sunagawa, and E. Ono, J Hazard. Mater. 181, 1016 (2010).

    Article  Google Scholar 

  32. 32.

    L. Qiang, I.S. Pinto, and Z. Youcai, J. Clean. Prod. 84, 663 (2014).

    Article  Google Scholar 

  33. 33.

    C. Nunez, F. Espiell, and A. Roca, Hydrometallurgy 14, 93 (1985).

    Article  Google Scholar 

  34. 34.

    J. Wu, X. Song, and G. Jiang, Nonferr. Met. (Extract. Metall.), 5 (2012) (in Chinese).

  35. 35.

    L.I. Siwei, Z. Liu, Z. Liu, L.I. Yuhu, and L.I. Qihou, Hydrometall. China 36, 336 (2017).

    Google Scholar 

  36. 36.

    D. Bhattacharyya, A. Jumawan Jr, and R. Grieves, Sep. Sci. Technol. 14, 441 (1979).

    Article  Google Scholar 

  37. 37.

    Y. Chen, T. Liao, G. Li, B. Chen, and X. Shi, Miner. Eng. 39, 23 (2012).

    Article  Google Scholar 

  38. 38.

    R. Dabekaussen, D. Droppert, and G. Demopoulos, CIM Bull. 94, 116 (2001).

    Google Scholar 

  39. 39.

    W. Tongamp, Y. Takasaki, and A. Shibayama, Hydrometallurgy 98, 213 (2009).

    Article  Google Scholar 

  40. 40.

    K. Karimov and S. Naboichenko, Metallurgist 60, 456 (2016).

    Article  Google Scholar 

  41. 41.

    N. Piret and A. Melin, TMS, 735 (1989).

  42. 42.

    A. Morales, M. Cruells, A. Roca, and R. Bergó, Hydrometallurgy 105, 148 (2010).

    Article  Google Scholar 

  43. 43.

    A. Dutra, P. Paiva, and L. Tavares, Miner. Eng. 19, 478 (2006).

    Article  Google Scholar 

  44. 44.

    X. Guo, J. Shi, Y. Yi, Q. Tian, and D. Li, J. Environ. Chem. Eng. 3, 2236 (2015).

    Article  Google Scholar 

  45. 45.

    P. Riveros, J. Dutrizac, and P. Spencer, Can. Metall. Q. 40, 395 (2001).

    Article  Google Scholar 

  46. 46.

    R.S. Alkis and W.T. Brett, Processes for the treatment of smelter flue dust, U.S. Patent 4891076 (1988).

  47. 47.

    Z. Xu, L. Qiang, H. Nie, and T. Nonferr, Metal. Soc. China 20, s176 (2010).

    Google Scholar 

  48. 48.

    D. Xu, Copper Eng. 3, 1009 (2018).

    Google Scholar 

  49. 49.

    J.D. Prater and B.A. Wells, Recovery of copper from arsenic containing metallurgical waste materials, U.S. Patent 4149880 (1979).

  50. 50.

    L. Guan, J. Lei, Y. Zheng, and Y. Xiong, Rare Met. 32, 88 (2008).

    Google Scholar 

  51. 51.

    W.G. Davenport, M.J. King, M.E. Schlesinger, and A.K. Biswas, Extract. Metall. Copper (Amsterdam: Elsevier, 2002).

  52. 52.

    D. Tang, W. Liu, and Z. Jiang, Guizhou Chem. Ind. 32, 5 (2007).

    Google Scholar 

  53. 53.

    B. Lan, J.E. Wang, H. Zhang, Z. Wu, S. Zhong, Q. Peng, C. Wang, and L. Zou, A Process for Comprehensive Recovery of Waste Smelting Waste Acid and Copper Smelting Open Road Dust, CN104593604A (2015).

  54. 54.

    B.-M. Pott and B. Mattiasson, Biotechnol. Lett. 26, 451 (2004).

    Article  Google Scholar 

  55. 55.

    A. Ante and M.-P. Hofmann, Method for separating arsenic and heavy metals in an acidic washing solution, U.S. Patent 9555362 B2 (2012).

  56. 56.

    Z. Dong, T. Jiang, B. Xu, Y. Yang, and Q. Li, J. Clean. Prod. 229, 387 (2019).

    Article  Google Scholar 

  57. 57.

    R. Robins, Arsenic hydrometallurgy, Arsen. Metall. Fundam. Appl., 215 (1988).

  58. 58.

    H. Jia, Recycling and Comprehensive Utilization of Metallurgical Waste with High Arsenic Content (Central South University, 2013).

  59. 59.

    L. Guoliang, C. Si, and B. Junzhi, J. Shenyang Jianzhu Univ. (Nat. Sci.) 22, 1671 (2006).

    Google Scholar 

  60. 60.

    A. Valenzuela, Arsenic management in the metallurgical industry, Université Laval (2000).

  61. 61.

    P.L. Smedley and D.G. Kinniburgh, Appl. Geochem. 17, 517 (2002).

    Article  Google Scholar 

  62. 62.

    R. Weinmuellner, K. Kryeziu, B. Zbiral, K. Tav, B. Schoenhacker-Alte, D. Groza, L. Wimmer, M. Schosserer, F. Nagelreiter, and S. Rösinger, Arch. Toxicol. 92, 181 (2018).

    Article  Google Scholar 

  63. 63.

    P. Xiang, Q. Feng, Y. Zhu, J. Deng, T. Long, Y. Niu, and T. Nonferr, Met. Soc. China 22, 1794 (2012).

    Google Scholar 

  64. 64.

    R.D. Witham, E.B. McNew, and J.L. Burba, Process for removing arsenic from aqueous streams, U.S. Patent 2004/0144729 A1. (2004).

  65. 65.

    D.H. Moon, D. Dermatas, and N. Menounou, Sci. Total. Environ. 330, 171 (2004).

    Article  Google Scholar 

  66. 66.

    S. Wang, Environ. Eng., 13 (1993) (in Chinese).

  67. 67.

    E. Vircikova and M. Havlik, JOM 20–23, 51 (1999).

    Google Scholar 

  68. 68.

    R.G. Robins and K. Tozawa, Can. Min. Metall. Bull. 75, 171 (1982).

    Google Scholar 

  69. 69.

    P. Gabb and A. Davies, JOM 51, 18 (1999).

    Article  Google Scholar 

  70. 70.

    Z. Liu, J. Guo, Z. Liang, and J. Zhang, Gold 33, 56 (2012).

    Google Scholar 

  71. 71.

    J. Hino, T. Kawabata, K. Miyamoto, and T. Yamaki, in Electrorefining and Hydrometallurgy of Copper, International Conference Held in Santiago, Chile, November 26-29, 1995, Papers, 617–627 (1995).

  72. 72.

    E. Krause and V. Ettel, Hydrometallurgy 22, 311 (1989).

    Article  Google Scholar 

  73. 73.

    R. James E. and C. Enzo L., Process for recovering metal values from materials containing arsenic, U.S. Patent 4244734 (1979).

  74. 74.

    R. Ruitenberg and C.J.N. Buisman, Process for immobilizing arsenic waste, U.S. Patent 6656722 B1 (2000).

  75. 75.

    A. Violante, M. Pigna, S. Del Gaudio, V. Cozzolino, and D. Banerjee, Environ. Sci. Technol. 43, 1515 (2009).

    Article  Google Scholar 

  76. 76.

    D. Langmuir, J. Mahoney, A. MacDonald, and J. Rowson, Geochim. Cosmochim. Acta. 63, 3379 (1999).

    Article  Google Scholar 

  77. 77.

    T. Li, China Nonferr. Metall. 5, 53 (2015).

    Google Scholar 

  78. 78.

    E. Krause and G. Nie, Hydrometall. China 20, 21 (1990).

    Google Scholar 

  79. 79.

    P. Swash, A. Monhemius and Synthesis, in Sudbury’95, Conference on Mining and the Environment, (Sudbury, Ontario, 1995).

  80. 80.

    D. Langmuir, J. Mahoney, and J. Rowson, Geochim. Cosmochim. Acta 70, 2942 (2006).

    Article  Google Scholar 

  81. 81.

    S. Singhania, Q. Wang, D. Filippou, and G.P. Demopoulos, Metal. Mater. Trans. B 37, 189 (2006).

    Article  Google Scholar 

  82. 82.

    D. Paktunc and K. Bruggeman, Appl. Geochem. 25, 674 (2010).

    Article  Google Scholar 

  83. 83.

    M. Ruonala, J. Leppinen, and V. Miettinen, Method for removing arsenic as scorodite, U.S. Patent 2011/0309029 A1 (2011).

  84. 84.

    E. Krause and V.A. Ettel, Hydrometallurgy 22, 311 (1989).

    Article  Google Scholar 

  85. 85.

    N.J. Welham, K.A. Malatt, and S. Vukcevic, Miner. Eng., 13, 911 (2000).

    Article  Google Scholar 

  86. 86.

    N. Papassiopi, K. Vaxevanidou, and I. Paspaliaris, Water Air Soil Pollut.: Focus 3, 81 (2003).

    Article  Google Scholar 

  87. 87.

    C. Verdugo, G. Lagos, L. Becze, M. Gomez, and G. Demopoulos, Proc. Hydro Process. 86 (2012).

  88. 88.

    P.M. Dove and J.D. Rimstidt, Am. Mineral. 70, 838 (1985).

    Google Scholar 

  89. 89.

    J. Viñals and C. Núñez, Metal. Mater. Trans. B 19, 365 (1988).

    Article  Google Scholar 

  90. 90.

    J. Vinals, A. Roca, and M. Arranz, Can. Metall. Q. 42, 29 (2003).

    Article  Google Scholar 

  91. 91.

    A. Sunyer and J. Viñals, Hydrometallurgy 109, 106 (2011).

    Article  Google Scholar 

  92. 92.

    D. Paktunc and J.E. Dutrizac, Can. Mineral. 41, 905 (2003).

    Article  Google Scholar 

  93. 93.

    U. Kolitsch and A. Pring, J. Miner. Petrol. Sci. 96, 67 (2001).

    Article  Google Scholar 

  94. 94.

    A. Sunyer and J. Viñals, Hydrometallurgy 109, 54 (2011).

    Article  Google Scholar 

  95. 95.

    J. Viñals, A. Sunyer, P. Molera, M. Cruells, and N. Llorca, Hydrometallurgy 104, 247 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51504293), Qinghai Provincial Major Scientific and Technological Special Project of China (No. 2018-GX-A7), Hunan Provincial Natural Science Foundation of China (No. 2018JJ4038), Hunan Provincial Investigation on the Status and Management of Electronic Waste(No. 502231805), the Fundamental Research Funds for the Central Universities of Central South University (CX20190138) and the Open-End Fund for the Valuable and Precision Instruments of Central South University (CSUZC201906).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wei Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 268 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, B., Ma, Y., Gao, W. et al. A Review of the Comprehensive Recovery of Valuable Elements from Copper Smelting Open-Circuit Dust and Arsenic Treatment. JOM (2020). https://doi.org/10.1007/s11837-020-04242-0

Download citation