Structure and Conductivity of Li3/8Sr7/16−xAxZr1/4Nb3/4O3 (A = Ca, Ba) Li-ion Solid Electrolytes

Abstract

Li3/8Sr7/16−xAxZr1/4Nb3/4O3 (A = Ca, Ba) ceramics were prepared by the conventional solid-state reaction method. The structures of prepared ceramic materials changed from cubic perovskite to tetragonal tungsten bronze with increasing barium (Ba) content as indicated by the x-ray diffraction (XRD) patterns. Li3/8Sr7/16−xBaxZr1/4Nb3/4O3 (x = 0.05, 0.10) samples are mixtures of perovskite and tetragonal tungsten bronze phases. Calcium ions (Ca2+) can partially occupy the Sr sites, and thus the cubic perovskite structure remains intact. However, an unknown phase could form because of a complete substitution of Ca for Sr; the ionic conductivity measured by the alternating-current impedance spectra of samples decreases with increasing Ba and Ca content. Parent Li3/8Sr7/16Zr1/4Nb3/4O3 exhibits the highest ionic conductivity of 1.23 × 10−5 S cm−1 at 25°C. Additionally, a half cell of LiFePO4/Li performed well in charge–discharge experiments, retaining a discharge capacity of 87.9 mAhg−1 after 300 cycles when Li3/8Sr7/16Zr1/4Nb3/4O3 was selected as the solid electrolyte separator.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    E. Quartarone and P. Mustarelli, Chem. Soc. Rev. 40, 2525 (2011).

    Article  Google Scholar 

  2. 2.

    K. Takada, Acta Mater. 61 (3), 759 (2013).

    Article  Google Scholar 

  3. 3.

    N. Ohta, K. Takada, L.Q. Zhang, R.Z. Ma, M. Osada, and T. Sasaki, Adv. Mater. 18, 2226 (2006).

    Article  Google Scholar 

  4. 4.

    J. Liu and X.L. Sun, Nanotechnology 26 (2), 024001 (2015).

    Article  Google Scholar 

  5. 5.

    C.H. Chen, S. Xie, E. Sperling, A.S. Yang, G. Henriksen, and K. Amine, Solid State Ion. 167, 263 (2004).

    Article  Google Scholar 

  6. 6.

    R. Yu, Q.X. Du, B.K. Zou, Z.Y. Wen, and C.H. Chen, J. Power Sources 306, 623 (2016).

    Article  Google Scholar 

  7. 7.

    B.X. Huang, B.Y. Xu, Y.T. Li, W.D. Zhou, Y. You, S.W. Zhong, C.A. Wang, and J.B. Goodenough, ACS Appl. Mater. Int. 8, 14552 (2016).

    Article  Google Scholar 

  8. 8.

    Y.Z. Kong, Y. Li, J.Y. Lu, and C.B. Hu, J. Mater. Sci. Mater. Electr. 28, 8621 (2017).

    Article  Google Scholar 

  9. 9.

    Y.Z. Kong, Y. Li, J.W. Li, C.B. Hu, X.H. Wang, and J.Y. Lu, Ceram. Int. 44, 3947 (2017).

    Article  Google Scholar 

  10. 10.

    J.Y. Lu, Y. Li, Y.Z. Kong, and N. Zhang, Ceram. Int. 44, 4744 (2018).

    Article  Google Scholar 

  11. 11.

    J.Y. Lu and Y. Li, Electrochim. Acta 282, 409 (2018).

    Article  Google Scholar 

  12. 12.

    Y.Z. Kong, Y. Li, J.Y. Lu, X.H. Wang, and J.W. Li, Mater. Res. Express. 4, 095504 (2017).

    Article  Google Scholar 

  13. 13.

    S.D. Song, B.T. Chen, Y.L. Ruan, J. Sun, L.M. Yu, and Y. Wang, J. Thokchom. Electrochim. Acta. 270, 501 (2018).

    Article  Google Scholar 

  14. 14.

    L. Truong, J. Colter, and V. Thangadurai, Solid State Ion. 247–248, 1 (2013).

    Article  Google Scholar 

  15. 15.

    T. Venkataraman and W. Werner, J. Am. Ceram. Soc. 88, 411 (2005).

    Article  Google Scholar 

  16. 16.

    V. Thangadurai and W. Weppner, Adv. Funct. Mater. 15, 107 (2005).

    Article  Google Scholar 

  17. 17.

    K. Homma, M. Yonemura, T. Kobayashi, M. Nagao, M. Hirayama, and R. Kanno, Solid State Ion. 182, 53 (2011).

    Article  Google Scholar 

  18. 18.

    Y. Sun, W. Yan, L. An, B.B. Wu, K.F. Zhong, and R.Z. Yang, Solid State Ion. 301, 59 (2017).

    Article  Google Scholar 

  19. 19.

    S.S. Mo, P.H. Lu, F. Ding, Z.B. Xu, J.Q. Liu, X.J. Liu, and Q. Xu, Solid State Ion. 296, 37 (2016).

    Article  Google Scholar 

  20. 20.

    L. Hallopeau, D. Bregiroux, G. Rousse, D. Portehault, P. Stevens, G. Toussaint, and C. Laberty-Robert, J. Power Sources 378, 48 (2017).

    Article  Google Scholar 

  21. 21.

    Y.R. Zhao, Z. Huang, S.J. Chen, B. Chen, J. Yang, Q. Zhang, F. Ding, Y.H. Chen, and X.X. Xu, Solid State Ion. 295, 65 (2016).

    Article  Google Scholar 

  22. 22.

    C.Z. Sun, X. Huang, J. Jin, Y. Lu, Q. Wang, J.H. Yang, and Z.Y. Wen, J. Power Sources 377, 36 (2018).

    Article  Google Scholar 

  23. 23.

    K.S. Rao, P.M. Krishna, and D.M. Prasad, Phys. Stat. Sol. (b) 244 (6), 2267 (2007).

    Article  Google Scholar 

  24. 24.

    E.O. Chi, A. Gandini, K.M. Ok, L. Zhang, and P.S. Halasyamani, Chem. Mater. 16, 3616 (2004).

    Article  Google Scholar 

  25. 25.

    L.A. Bursill and B.G. Hyde, Nat. Phys. Sci. 240 (102), 122 (1972).

    Article  Google Scholar 

  26. 26.

    J. Ma, B.B. Chen, L.L. Wang, and G.L. Cui, J. Power Sources 392, 94 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the National Natural Science Foundation of China (Grant Nos. 51834004, 51774076, 51704063, and 51474057). The first author is also thankful to Liaoning Key Laboratory for Metallurgical Sensor and Technology providing the facilities for the research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ying Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Li, Y. & Ding, Y. Structure and Conductivity of Li3/8Sr7/16−xAxZr1/4Nb3/4O3 (A = Ca, Ba) Li-ion Solid Electrolytes. JOM (2020). https://doi.org/10.1007/s11837-020-04239-9

Download citation