Investigation of Inclusion Agglomeration and Flotation During Levitation Melting of Ni-Based Superalloy in a Cold Crucible

Abstract

Inclusion agglomeration and flotation during levitation melting in a cold crucible were investigated. The morphology, number and chemical composition of inclusions were characterized by scanning electron microscopy and transmission electron microscopy with energy-dispersive x-ray spectroscopy analysis. In the billet, inclusions were mainly single mixed inclusions (oxide as the core, nitride as the shell), and their size was in the range of 1–7 μm. After levitation melting, approximately 81% of inclusions existed in the form of clusters. The number of clusters was higher at the top, and the size was larger at the top (150–250 μm). The mechanism of levitation melting removing inclusions was discussed by collision theory. First, nitrides dissolved, and the core oxides were exposed. Then, oxides collided, agglomerated, and floated. Turbulent collision played the leading role in inclusion agglomeration, while Stokes collision was predominant for inclusion flotation. Finally, nitrides precipitated again during solidification.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    M.H. Manjili and M. Halali, Metall. Mater. Trans. B 49, 61 (2017).

    Article  Google Scholar 

  2. 2.

    D. Texier, J. Cormier, P. Villechaise, J.C. Stinville, C.J. Torbet, S. Pierret, and T.M. Pollock, Mater. Sci. Eng. A 678, 122 (2016).

    Article  Google Scholar 

  3. 3.

    G.L. Miao, X.G. Yang, and D.Q. Shi, Mater. Sci. Eng. A 668, 66 (2016).

    Article  Google Scholar 

  4. 4.

    J. Jiang, J. Yang, T.T. Zhang, F.P.E. Dunne, and T.B. Britton, Acta Mater. 97, 367 (2015).

    Article  Google Scholar 

  5. 5.

    Q.F. You, H. Yuan, L.H. Zhao, J.Y. Li, X.G. You, S. Shi, Y. Tan, and X.F. Ding, Vacuum 156, 39 (2018).

    Article  Google Scholar 

  6. 6.

    H. Wang, Y.B. Zhong, Q. Li, Y.P. Fang, W.L. Ren, Z.S. Lei, and Z.M. Ren, Metall. Mater. Trans. B 48, 655 (2016).

    Article  Google Scholar 

  7. 7.

    S.C. Duan, X. Shi, M.T. Mao, W.S. Yang, S.W. Han, H.J. Guo, and J. Guo, Sci. Rep. 8, 5232 (2018).

    Article  Google Scholar 

  8. 8.

    K. Wu, G.Q. Liu, B.F. Hu, C.Y. Wang, Y.W. Zhang, Y. Tao, and J.T. Liu, Mater. Sci. Eng. A 528, 4620 (2011).

    Article  Google Scholar 

  9. 9.

    W.P. Yang, G.Q. Liu, K. Wu, and B.F. Hu, J. Alloys Compd. 582, 515 (2014).

    Article  Google Scholar 

  10. 10.

    A. Choudhury, ISIJ Int. 32, 563 (1992).

    Article  Google Scholar 

  11. 11.

    X. Xu, R.M. Ward, M.H. Jacobs, P.D. Lee, and M. Mclean, Metall. Mater. Trans. A 33, 1795 (2002).

    Article  Google Scholar 

  12. 12.

    R.L. Williamson, J.J. Beaman, D.K. Melgaard, G.J. Shelmidine, and R. Morrison, Metall. Mater. Trans. B 35, 101 (2004).

    Article  Google Scholar 

  13. 13.

    S.A. Hosseini, S.M. Abbasi, and K.Z. Madar, Mater. Sci. Eng. A 712, 780 (2018).

    Article  Google Scholar 

  14. 14.

    S.J. Sun, Y.Z. Tian, H.R. Lin, X.G. Dong, Y.H. Wang, Z.J. Zhang, and Z.F. Zhang, Mater. Des. 133, 122 (2017).

    Article  Google Scholar 

  15. 15.

    S.Q. Xia and Y. Zhang, Mater. Sci. Eng. A 733, 408 (2018).

    Article  Google Scholar 

  16. 16.

    S.Q. Xia, M.C. Gao, T.F. Yang, P.K. Liaw, and Y. Zhang, J. Nucl. Mater. 480, 100 (2016).

    Article  Google Scholar 

  17. 17.

    S.Q. Xia, X. Yang, T.F. Yang, S. Liu, and Y. Zhang, JOM 67, 2340 (2015).

    Article  Google Scholar 

  18. 18.

    Y.Z. Li, F. Hu, L. Luo, J.Y. Xu, Z.W. Zhao, Y.H. Zhang, and D.L. Zhao, Catal. Today 318, 103 (2018).

    Article  Google Scholar 

  19. 19.

    D. Rabadia, Y.J. Liu, G.H. Cao, Y.H. Li, C.W. Zhang, T.B. Sercombe, H. Sun, and L.C. Zhang, Mater. Sci. Eng. A 732, 368 (2018).

    Article  Google Scholar 

  20. 20.

    M.Y. Wu, X.R. Yang, R.X. Zou, F.J. Qian, S.Y. Hu, W.Y. Wang, G.L. Zhong, X.F. Miao, and F. Xu, Mater. Lett. 236, 579 (2019).

    Article  Google Scholar 

  21. 21.

    Z.D. Yao, X.Z. Xiao, Z.Q. Liang, H.Q. Kou, W.H. Luo, C.G. Chen, L.J. Jiang, and L.X. Chen, J. Alloys Compd. 784, 1062 (2019).

    Article  Google Scholar 

  22. 22.

    M. Besse, P. Castany, and T. Gloriant, Acta Mater. 59, 5982 (2011).

    Article  Google Scholar 

  23. 23.

    T. Toh, H. Yamamura, H. Kondo, M. Wakoh, S.I. Shimasaki, and S. Taniguchi, ISIJ Int. 47, 1625 (2007).

    Article  Google Scholar 

  24. 24.

    T. Toh, H. Yamamura, H. Kondo, M. Wakoh, and E. Takeuchi, ISIJ Int. 45, 984 (2005).

    Article  Google Scholar 

  25. 25.

    Z.C. Peng, G.F. Tian, J. Jiang, M.Z. Li, Y. Chen, J.W. Zou, and F.P.E. Dunne, Mater. Sci. Eng. A 676, 441 (2016).

    Article  Google Scholar 

  26. 26.

    B. Fang, Z. Ji, M. Liu, G.F. Tian, C.C. Jia, T.T. Zeng, B.F. Hu, and Y.H. Chang, Mater. Sci. Eng. A 593, 8 (2014).

    Article  Google Scholar 

  27. 27.

    M.G. Li, H. Matsuura, and F. Tsukihashi, Mater. Charact. 136, 358 (2018).

    Article  Google Scholar 

  28. 28.

    M. Nuspl, W. Wegscheider, J. Angeli, W. Posch, and M. Mayr, Anal. Bioanal. Chem. 379, 640 (2004).

    Article  Google Scholar 

  29. 29.

    N. Choi, K.R. Lim, Y.S. Na, U. Glatzel, and J.H. Park, J. Alloys Compd. 763, 546 (2018).

    Article  Google Scholar 

  30. 30.

    X. Yin, Y. Yang, D. Li, Y. Sun, X. Deng, M. Barati, and A. McLean, Ironmak. Steelmak. 44, 140 (2017).

    Article  Google Scholar 

  31. 31.

    Z.Y. Deng and M.Y. Zhu, ISIJ Int. 53, 450 (2013).

    Article  Google Scholar 

  32. 32.

    M. Jiang, X.H. Wang, B. Chen, and W.J. Wang, ISIJ Int. 50, 95 (2010).

    Article  Google Scholar 

  33. 33.

    M. Jiang, X.H. Wang, and W.J. Wang, Steel Res. Int. 81, 759 (2010).

    Article  Google Scholar 

  34. 34.

    S.J. Luo, Y.H.F. Su, M.J. Lu, and J.C. Kuo, Mater. Charact. 82, 103 (2013).

    Article  Google Scholar 

  35. 35.

    H. Goto, K.I. Miyazawa, and K. Tanaka, ISIJ Int. 35, 286 (1995).

    Article  Google Scholar 

  36. 36.

    L. Yang and G.G. Cheng, Int. J. Miner. Metall. Mater. 24, 869 (2017).

    Article  Google Scholar 

  37. 37.

    W.J. Ma, Y.P. Bao, L.H. Zhao, and M. Wang, Int. J. Miner. Metall. Mater. 21, 234 (2014).

    Article  Google Scholar 

  38. 38.

    Y. Liu, L.F. Zhang, H.J. Duan, Y. Zhang, Y. Luo, and A.N. Conejo, Metall. Mater. Trans. A 47A, 3015 (2016).

    Article  Google Scholar 

  39. 39.

    Q.R. Tian, G.C. Wang, D.L. Shang, H. Lei, X.H. Yuan, Q. Wang, and J. Li, Metall. Mater. Trans. B 49B, 3137 (2018).

    Article  Google Scholar 

  40. 40.

    Q.R. Tian, G.C. Wang, Y. Zhao, J. Li, and Q. Wang, Metall. Mater. Trans. B 49B, 1149 (2018).

    Article  Google Scholar 

  41. 41.

    L. Yang, G.G. Cheng, S.J. Li, M. Zhao, and G.P. Feng, ISIJ Int. 55, 1693 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Natural Science Foundation of China (51574030, 51174029) and National Key R&D Program of China (2017YFB0305600, 2016YFB0301400).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lin Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Zhang, L., Luan, Y. et al. Investigation of Inclusion Agglomeration and Flotation During Levitation Melting of Ni-Based Superalloy in a Cold Crucible. JOM (2020). https://doi.org/10.1007/s11837-020-04238-w

Download citation