Copper Recovery from Printed Circuit Boards Using Acidic Ferric Chloride Leaching and Electrodeposition

Abstract

In this work, 0.5 mol L−1 HCl and 0.13 mol L−1 FeCl3 have been used as leaching solution of industrially wasted copper at room temperature. Copper recovery from the leaching solution has been studied by batch electrodeposition at room temperature and either by using different constant current densities or by pulsing the current. The deposits obtained at 20 mA cm−2 show low efficiencies and are mainly composed of Cu0 with CuCl being a minor component. When the deposits are obtained at 50 mA cm−2, the efficiency is higher, but the adherence is poor and the porosity is high. By using pulsed electrodeposition, it is possible to improve the adherence of the deposits. However, the deposits are contaminated with copper and iron oxides, as well as with chloride compounds. Tin was not detected in any of the deposits obtained using all the electrodeposition conditions tested in this work.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    K. Koyama, M. Tanaka, and J.C. Lee, Mater. Trans. 47, 1788 (2006).

    Article  Google Scholar 

  2. 2.

    S. Fogarasi, F. Imre-Lucaci, A. Imre-Lucaci, and P. Ilea, J. Hazard. Mater. 273, 215 (2014).

    Article  Google Scholar 

  3. 3.

    J.W. Dini, Electrodeposition of Copper—Modern Electroplating, 4th ed. (New York: Wiley, 2000), pp. 33–78.

    Google Scholar 

  4. 4.

    T. Oishi, K. Koyama, T. Alam, M. Tanaka, and J.C. Lee, Hydrometallurgy 89, 82 (2007).

    Article  Google Scholar 

  5. 5.

    Z. Sun, Y. Xiao, J. Sietsma, H. Agterhuis, and Y. Yang, Environ. Sci. Technol. 49, 7981 (2015).

    Article  Google Scholar 

  6. 6.

    A.C. Kasper, G.B.T. Berselli, B.D. Freitas, J.A.S. Tenório, A.M. Bernardes, and H.M. Veit, Waste Manag. 31, 2536 (2011).

    Article  Google Scholar 

  7. 7.

    H.M. Veit, A.M. Bernardes, J.Z. Ferreira, J.A.S. Tenorio, and C.D.F. Malfatti, J. Hazard. Mater. 137, 1704 (2006).

    Article  Google Scholar 

  8. 8.

    F. Li, M. Chen, J. Shu, M. Shirvani, Y. Li, Z. Sun, S. Sun, Z. Xu, K. Fu, and S. Chen, J. Cleaner Prod. 213, 673 (2019).

    Article  Google Scholar 

  9. 9.

    S. Fogarazi, F. Imre-Lucai, A. Egedy, A. Imre-Lucaci, and P. Ilea, Waste Manag. 40, 136 (2015).

    Article  Google Scholar 

  10. 10.

    E.Y. Yazici and H. Deveci, Int. J. Miner. Process. 133, 39 (2014).

    Article  Google Scholar 

  11. 11.

    E. Kim, M. Kim, J. Lee, J. Jeong, and B.D. Pandey, Hydrometallurgy 107, 124 (2011).

    Article  Google Scholar 

  12. 12.

    R. Torres and G.T. Lapidus, Waste Manag. 57, 131 (2016).

    Article  Google Scholar 

  13. 13.

    S. Silva-Martinez and S. Roy, Sep. Purif. Technol. 118, 6 (2013).

    Article  Google Scholar 

  14. 14.

    F.P.C. Silvas, M.M.J. Correa, M.P.K. Caldas, V.T.D. Moraes, D.C.R. Espinosa, and J.A.S. Tenório, Waste Manag. 46, 503 (2015).

    Article  Google Scholar 

  15. 15.

    C. Cocchiara, S.A. Dormenau, R. Inguanta, C. Sunseri, and P. Ilea, J. Clean. Prod. 230, 170 (2019).

    Article  Google Scholar 

  16. 16.

    I. Birloaga, I.D. Michelis, F. Ferella, M. Buzatu, and F. Vegliò, Waste Manag. 33, 935 (2013).

    Article  Google Scholar 

  17. 17.

    R.A. Day and A.L. Underwood, Quimica Analítica Cuantitativa (Mexico: Prentice-Hall Hispanoamericana, 1989).

    Google Scholar 

  18. 18.

    M.J. Kim, S.K. Cho, H.C. Koo, T. Lim, K.J. Park, and J.J. Kim, J. Electrochem. Soc. 157, D564 (2010).

    Article  Google Scholar 

  19. 19.

    V. Chandrasekar and M. Pushpavanam, Electrochim. Acta 53, 3313 (2008).

    Article  Google Scholar 

  20. 20.

    D.R. Lide, Handbook of Chemistry and Physics (Boca Raton: CRC, 1998).

    Google Scholar 

  21. 21.

    B.D. Cullity, Element of X-Ray Difraction (Reading: Adison-Wesley, 1956).

    Google Scholar 

  22. 22.

    Y.S. Gong, C. Lee, and C.K. Yang, J. Appl. Phys. 77, 5422 (1995).

    Article  Google Scholar 

  23. 23.

    D.L.A.D. Faria, S.V. Silva, and M.T.D. Oliveira, J. Raman Spectrosc. 28, 873 (1997).

    Article  Google Scholar 

  24. 24.

    L. Yohai, W.H. Schreiner, M. Vázquez, and M.B. Valcarc, Appl. Surf. Sci. 257, 9689 (2011).

    Article  Google Scholar 

  25. 25.

    W. Shao, G. Pattanaik, and G. Zangari, J. Electrochem. Soc. 154, D201 (2007).

    Article  Google Scholar 

  26. 26.

    P. Sebastián, E. Torralba, E. Vallés, A. Molina, and E. Gómez, Electrochim. Acta 164, 187 (2015).

    Article  Google Scholar 

  27. 27.

    R. Frost, Spectrochim. Acta Part A 59, 1195 (2003).

    Article  Google Scholar 

  28. 28.

    P.T. Huyen, T.D. Dang, M.T. Tung, N.T.T. Huyen, T.A. Green, and S. Roy, Hydrometallurgy 164, 295 (2016).

    Article  Google Scholar 

  29. 29.

    J.C. Hamilton, J.C. Farmer, and R.J. Anderson, J. Electrochem. Soc. 133, 739 (1986).

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the following institutions in Argentina: University of Mar del Plata (Grant 15/G351), National Research Council (CONICET, PIP0661) and Agencia Nacional de Promoción Científica y Tecnológica (PICT 0972/15).

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. B. Valcarce.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 546 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Masari, F., Ceré, S. & Valcarce, M.B. Copper Recovery from Printed Circuit Boards Using Acidic Ferric Chloride Leaching and Electrodeposition. JOM (2020). https://doi.org/10.1007/s11837-020-04236-y

Download citation