The Effect of Grain Size on the Bend Forming Limits in AZ31 Mg Alloy


The present study examines the bending behavior of coarse and fine-grained AZ31 magnesium alloy. The corresponding deformation mechanisms are ascertained via tensile, compression, and bending tests in combination with digital image correlation and electron backscatter diffraction. It is shown that grain refinement from 60 μm to 3 μm significantly improves tensile ductility, while forming limits in compression and bending show no obvious effect of grain size. Analysis of the microstructure revealed a high density of twin bands in the compression zones of the bent samples. Interestingly, the fine-grained material experienced failure in the compression zone. The fracture strain in bending appears limited by the material ductility in both tension and compression. The outcome of this study is that in magnesium alloys grain refinement may not always be an effective method for the improvement of ductility, particularly when bending of the type considered here is dominant.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    F. Zarandi and S. Yue, Magnesium Sheet; Challenges and Opportunities (INTECH Open Access Publisher, 2011).

  2. 2.

    S. R. Agnew, 2—Deformation mechanisms of magnesium alloys, Advances in Wrought Magnesium Alloys, (2012), pp 63–104.

  3. 3.

    G.T. Halmos, Roll Forming Handbook (Boca Raton: CRC Press, 2005).

    Google Scholar 

  4. 4.

    J. Hu, Z. Marciniak, and J. Duncan, Mechanics of Sheet Metal Forming (Amsterdam: Elsevier Science, 2002).

    Google Scholar 

  5. 5.

    J. Datsko and C.T. Yang, J. Eng. Ind. 82, 309 (1960).

    Article  Google Scholar 

  6. 6.

    M. R. Barnett, 6—Forming of magnesium and its alloys, in Fundamentals of Magnesium Alloy Metallurgy, (2013), pp. 197–231.

  7. 7.

    I. Aslam, B. Li, Z. McClelland, S.J. Horstemeyer, Q. Ma, P.T. Wang, and M.F. Horstemeyer, J. Mater. Sci. Eng. A 590, 168 (2014).

    Article  Google Scholar 

  8. 8.

    A. Ben-Artzy, L. G. Hector Jr and P. E. Krajewski, in Proceedings of the Magnesium Technology (2010), pp. 69–75.

  9. 9.

    W. Wang, W. Zhang, W. Chen, G. Cui, and E. Wang, J. Alloys Compd. 737, 505 (2018).

    Article  Google Scholar 

  10. 10.

    S.A. Habib, J.T. Lloyd, C.S. Meredith, A.S. Khan, and S.E. Schoenfeld, Int. J. Plast 122, 285 (2019).

    Article  Google Scholar 

  11. 11.

    L. Jin, J. Dong, J. Sun, and A.A. Luo, Int. J. Plast 72, 218 (2015).

    Article  Google Scholar 

  12. 12.

    J. Singh, M.-S. Kim, and S.-H. Choi, Int. J. Plast 117, 33 (2019).

    Article  Google Scholar 

  13. 13.

    S. J. H. B. Li, A.L. Oppedal, P.T. Wang, M.F. Horstemeyer, TMS 2013, Annual Meeting and Exhibition, Supplemental Proceedings, 142nd.

  14. 14.

    L. Jin, J. Dong, A. Luo, R. Mishra, A. Sachdev, and W. Wu, J. Mater. Sci. 47, 3801 (2012).

    Article  Google Scholar 

  15. 15.

    C. Bruni, A. Forcellese, F. Gabrielli, and M. Simoncini, J. Mater. Process. Technol. 177, 373 (2006).

    Article  Google Scholar 

  16. 16.

    L. Wang, G. Huang, H. Zhang, Y. Wang, and L. Yin, J. Mater. Process. Technol. 213, 844 (2013).

    Article  Google Scholar 

  17. 17.

    M. Habibnejad-Korayem, M.K. Jain, and R.K. Mishra, J. Mater. Sci. Eng. A 648, 371 (2015).

    Article  Google Scholar 

  18. 18.

    M. Habibnejad-korayem, M.K. Jain, and R.K. Mishra, J. Mater. Sci. Eng. A 619, 378 (2014).

    Article  Google Scholar 

  19. 19.

    J. Bohlen, P. Dobroň, J. Swiostek, D. Letzig, F. Chmelík, P. Lukáč, and K.U. Kainer, J. Mater. Sci. Eng. A 462, 302 (2007).

    Article  Google Scholar 

  20. 20.

    H. Yu, Y. Xin, M. Wang, and Q. Liu, J. Mater. Sci. Technol. 34, 248 (2018).

    Article  Google Scholar 

  21. 21.

    D.L. Atwell, M.R. Barnett, and W.B. Hutchinson, J. Mater. Sci. Eng. A 549, 1 (2012).

    Article  Google Scholar 

  22. 22.

    A. Jain, O. Duygulu, D.W. Brown, C.N. Tomé, and S.R. Agnew, J. Mater. Sci. Eng. 486, 545 (2008).

    Article  Google Scholar 

  23. 23.

    N. Stanford and M.R. Barnett, J. Alloys Compd. 466, 182 (2008).

    Article  Google Scholar 

  24. 24.

    W. Yuan, S.K. Panigrahi, J.Q. Su, and R.S. Mishra, Scr. Mater. 65, 994 (2011).

    Article  Google Scholar 

  25. 25.

    H. Yu, C. Li, Y. Xin, A. Chapuis, X. Huang, and Q. Liu, Acta Mater. 128, 313 (2017).

    Article  Google Scholar 

  26. 26.

    L. Guo, Z. Chen, and L. Gao, J. Mater. Sci. Eng. A 528, 443 (2011).

    Google Scholar 

  27. 27.

    C.M. Cepeda-Jiménez, J.M. Molina-Aldareguia, and M.T. Pérez-Prado, Acta Mater. 84, 443 (2015).

    Article  Google Scholar 

  28. 28.

    J.A. del Valle, F. Carreño, and O.A. Ruano, Acta Mater. 54, 4247 (2006).

    Article  Google Scholar 

  29. 29.

    D. Liu, Z. Liu, and E. Wang, J. Mater. Sci. Eng. A 612, 208 (2014).

    Article  Google Scholar 

  30. 30.

    Q. Miao, L.-X. Hu, H.-F. Sun, and E.-D. Wang, Trans. Nonferrous Met. Soc. China 19, 326 (2009).

    Article  Google Scholar 

  31. 31.

    S.H.M. Azghandi, M. Weiss, B.D. Arhatari, and M.R. Barnett, J. Alloys Compd. (2019).

    Article  Google Scholar 

  32. 32.

    L. Balogh, S.R. Niezgoda, A.K. Kanjarla, D.W. Brown, B. Clausen, W. Liu, and C.N. Tomé, Acta Mater. 61, 3612 (2013).

    Article  Google Scholar 

  33. 33.

    P. Chen, F. Wang, J. Ombogo, and B. Li, J. Mater. Sci. Eng. A 739, 173 (2019).

    Article  Google Scholar 

  34. 34.

    M.R. Barnett, J. Mater. Sci. Eng. A 464, 8 (2007).

    Article  Google Scholar 

  35. 35.

    J. Koike, Metall. Mater. Trans. A 36, 1689 (2005).

    Article  Google Scholar 

Download references


Financial support from a Deakin International Postgraduate Scholarship is gratefully acknowledged. The authors also acknowledge support from the Deakin Advanced Characterization Facility. S.H.M.A. thanks Prof. Bevis Hutchinson for productive discussions.

Author information



Corresponding author

Correspondence to S. H. Mohamadi Azghandi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 763 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Azghandi, S.H.M., Weiss, M. & Barnett, M.R. The Effect of Grain Size on the Bend Forming Limits in AZ31 Mg Alloy. JOM 72, 2586–2596 (2020).

Download citation