Dissolution Behavior of Rare-Earth Metal in H2SO4-H3PO4-H3PW12O40 Solution


The dissolution behavior of a rare-earth element in H2SO4-H3PO4-H3PW12O40 solution has been investigated. The results showed that La2(SO4)3 dissolution increased with increasing H3PO4 or H3PW12O40 concentration in single H3PO4 or H3PW12O40 solution. The presence of H3PW12O40 can improve La2(SO4)3 dissolution owing to its coordination toward La3+ in H3PO4-H3PW12O40 mixed solution. However, La2(SO4)3 dissolution decreased gradually with increasing H2SO4 concentration in H2SO4-H3PW12O40 mixed solution. In these solutions, increasing the temperature showed an adverse effect on La2(SO4)3 dissolution. In H2SO4-H3PO4-H3PW12O40 solution, when the concentration of H2SO4 or/and H3PO4 was lower, increasing the H3PO4 concentration or decreasing the temperature was beneficial to La2(SO4)3 dissolution. However, when H2SO4 or H3PO4 reached a certain concentration, some H3PW12O40 precipitated from the mixed solution. Furthermore, increasing the H3PO4 concentration was found to be harmful, while increasing the temperature could increase La2(SO4)3 dissolution. Nevertheless, increasing the H2SO4 concentration showed an adverse effect on La2(SO4)3 dissolution regardless of the H3PO4 concentration.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    K. Habib and H. Wenzel, J. Clean. Prod. 84, 348 (2014).

    Article  Google Scholar 

  2. 2.

    K. Binnemans, P.T. Jones, B. Blanpain, T.V. Gerven, Y.X. Yang, and A. Walton, J. Clean. Prod. 51, 1 (2013).

    Article  Google Scholar 

  3. 3.

    X.Y. Han, P. Li, Y. Wang, and X.L. Wang, China Nonferrous Met. 20, 34 (2010).

    Google Scholar 

  4. 4.

    J. Demol, E. Ho, K. Soldenhoff, and G. Senanayake, Hydrometallurgy 188, 123 (2019).

    Article  Google Scholar 

  5. 5.

    G.X. Xu, Rare Earth, Vol. 1 (Beijing: Metallurgical Industry Publisher, 1995).

    Google Scholar 

  6. 6.

    Z.G. Wang, X.Y. Yu, and Z.H. Zhao, Rare Earth Element Geochemistry (Beijing: Science Press, 1989).

    Google Scholar 

  7. 7.

    X. Lan, J.T. Gao, Y. Li, and Z.C. Guo, J. Hazard. Mater. 367, 473 (2019).

    Article  Google Scholar 

  8. 8.

    E. Alonso, A.M. Sherman, T.J. Wallington, M.P. Everson, and F.R. Field, Environ. Sci. Technol. 46, 3406 (2012).

    Article  Google Scholar 

  9. 9.

    B.C. Yan, Z.M. An, and M. Hao, Res. Dev. 2, 43 (2011).

    Google Scholar 

  10. 10.

    H.G. Li, J.G. Yang, and K. Li, Tungsten Metall. (Central South University Press, Changsha, 2011).

  11. 11.

    Y.X. Zhang, Y.M. Liu, S.D. Gao, and Q.G. He, Chin. J. Geochem. 9, 319 (1990).

    Article  Google Scholar 

  12. 12.

    Z. Zhao, Y. Liang, and H. Li, Int. J. Refract. Met. Hard Mater. 29, 289 (2011).

    Article  Google Scholar 

  13. 13.

    S. Hairunnisha, G.K. Sendil, J.P. Rethinaraj, G.N. Srinivasan, P. Adaikkalam, and S. Kulandaisamy, Hydrometallurgy 85, 67 (2007).

    Article  Google Scholar 

  14. 14.

    K. Srinivas, T. Sreenivas, R. Natarajan, and N.P.H. Padmanabhan, Hydrometallurgy 58, 43 (2000).

    Article  Google Scholar 

  15. 15.

    Y.H. Xu, Z.G. Deng, W. Li, and T.H. Yu, Jiangxi Nonferrous Met. 11, 32 (1997).

    Google Scholar 

  16. 16.

    Z.W. Zhao and J.T. Li, US Patent No. 8771617 (2014).

  17. 17.

    C. Koopman and G.J. Witkamp, Hydrometallurgy 58, 51 (2000).

    Article  Google Scholar 

  18. 18.

    J.S. Preston, P.M. Cole, W.M. Craig, and A.M. Feather, Hydrometallurgy 41, 1 (1996).

    Article  Google Scholar 

  19. 19.

    L.F. Wang, J. Zhang, and Z.H. Liu, Appl. Chem. Ind. 38, 1785 (2009).

    Google Scholar 

  20. 20.

    L.S. Wang, Z.Q. Long, X.W. Huang, and Y. Yu, Hydrometallurgy 101, 41 (2010).

    Article  Google Scholar 

  21. 21.

    L.S. Wang, Z.Q. Long, X.W. Huang, X.L. Peng, Y.B. Han, and D. Cui, J. Chin. Rare Earth Soc. 26, 307 (2008).

    Article  Google Scholar 

  22. 22.

    C.Y. Rong, J.F. Liu, X. Chen, and E.B. Wang, Inorg. Chim. Acta 130, 265 (1987).

    Article  Google Scholar 

  23. 23.

    X.Y. Chen, Q. Chen, F.L. Guo, Y.L. Liao, and Z.W. Zhao, Hydrometallurgy 175, 326 (2018).

    Article  Google Scholar 

  24. 24.

    M.A. Fedotov, B.Z. Pertsikov, and D.K. Danovich, Polyhedron 9, 1249 (1990).

    Article  Google Scholar 

  25. 25.

    E.B. Wang, S.L. Zhao, Y.X. Zhou, and J.F. Liu, Chem. J. Chin. Univ. 3, 155 (1982).

    Google Scholar 

  26. 26.

    F. Wirth, J. Inorg. Chem. 76, 174 (1912).

    Google Scholar 

  27. 27.

    K. Spahiu, and J. Bruno, SKB 24–56 (1995).

  28. 28.

    S.X. Wu, L.S. Zhao, L.S. Wang, X.W. Huang, J.S. Dong, Z.Y. Feng, D.L. Cui, and L.F. Zhang, Trans. Nonferrous Met. Soc. China 28, 2375 (2018).

    Article  Google Scholar 

  29. 29.

    X.W. Liu and R.H. Byene, Geochim. Cosmochim. Acta 61, 1625 (1997).

    Article  Google Scholar 

  30. 30.

    F.L. Guo, X.Y. Chen, Z.W. Zhao, L.H. He, K.H. Yang, and Z. Yang, Chin. J. Nonferrous Met. 28, 387 (2018).

    Google Scholar 

  31. 31.

    B.J. Smith and V.A. Patrick, Aust. J. Chem. 57, 261 (2004).

    Article  Google Scholar 

  32. 32.

    J.X. Cao, Some related theory research on scheelite leaching, Dissertation, Central South University, 2012.

Download references


This research was financially supported by the National Natural Science Foundation of China (51974372) and the Sheng Hua Yuying Program of CSU.

Author information



Corresponding author

Correspondence to Xuheng Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Guo, F., Chen, Q. et al. Dissolution Behavior of Rare-Earth Metal in H2SO4-H3PO4-H3PW12O40 Solution. JOM 72, 2748–2753 (2020). https://doi.org/10.1007/s11837-020-04071-1

Download citation