Effect of Electromagnetic Stirring on the Solidification Behavior of High-Magnetic-Induction Grain-Oriented Silicon Steel Continuous Casting Slab


The solidification behaviors of high-magnetic-induction grain-oriented silicon steel slabs have been investigated during experiments in industrial strand electromagnetic stirring (S-EMS). The current intensities of S-EMS were 0, 120, 200, and 350 A, and the frequency was 5 Hz. The ratio of the equiaxed crystal was 14.95%, 15.64%, 45.22%, and 66.96%, respectively. Central porosity cannot be eliminated by increasing the current intensity. The number, size, and ratio of segregation spots were markedly reduced by minimizing the equiaxed crystal zone. Carbon in the 0 and 120 A slabs exhibited a lower degree of macrosegregation compared with the 200 and 350 A slabs. Controlling the cooling rate and increasing the total reduction are the directions to further improve solidification structures, defects, and carbon segregation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    M. Littman, J. Magn. Magn. Mater. 26, 1 (1982).

    Article  Google Scholar 

  2. 2.

    Z. Xia, Y. Kang, and Q. Wang, J. Magn. Magn. Mater. 23, 3229 (2008).

    Article  Google Scholar 

  3. 3.

    M.Q. Yan, H. Qian, P. Yan, H.J. Song, Y.Y. Shao, and W.M. Mao, Acta Metall. Sin. 48, 16 (2012).

    Article  Google Scholar 

  4. 4.

    Z. Liu, Z. Liu, J. Li, and Z. He, Acta Metall. Sin. 5, 33 (1992).

    Google Scholar 

  5. 5.

    S. Choudhary, S. Ganguly, A. Sengupta, and V. Sharma, J. Mater. Process. Tech 243, 312 (2017).

    Article  Google Scholar 

  6. 6.

    Y. Tsuchida, I. Sugawara, S. Miyahara, T. Ishida, M. Ishikawa, and S. Matsumoto, Trans. Iron. Steel. Int. Japan. 22, B265 (1982).

    Google Scholar 

  7. 7.

    M. Réger, B. Verő, Z. Csepeli, and Á. Szélig, Mater. Sci. Forum 508, 233 (2006).

    Article  Google Scholar 

  8. 8.

    H. Zhang, E. Wang, and G. Jia, J. He. Acta. Metall. Sin. 14, 227 (2001).

    Google Scholar 

  9. 9.

    H.T. Liu, Z.Y. Liu, G.M. Cao, C.G. Li, and G.D. Wang, J. Magn. Magn. Mater. 323, 2648 (2011).

    Article  Google Scholar 

  10. 10.

    T. Itakura, T. Ishige, M. Nakada, H. Nakashima, and M. Tada, Steelmak. Confer. 77, 291 (1994).

    Google Scholar 

  11. 11.

    F. Satou, H. Esaka, and K. Shinozuka, Tetsu. To. Hagane. J. Iron. Steel. Ins. Japan. 99, 108 (2013).

    Article  Google Scholar 

  12. 12.

    Y. Tsuchida, M. Nakada, U. Sugawara, S. Miyahara, K. Murakami, and S. Tokushige, Trans. Iron. Steel. Int. Japan. 24, 899 (1984).

    Article  Google Scholar 

  13. 13.

    Z. Xu, X. Wang, F. Huang, L. Zhou, W. Wang, and Y. Yin, J. U. Sci. Technol. Beijing. 36, 751 (2014).

    Google Scholar 

  14. 14.

    H. Wu, N. Wei, Y. Bao, G. Wang, and C. Xiao, J. Liu. Int. J. Min. Met. Mater. 18, 159 (2011).

    Article  Google Scholar 

  15. 15.

    H. An, Y. Bao, M. Wang, and L. Zhao, Metal. Res. Technol. 114, 405 (2017).

    Article  Google Scholar 

  16. 16.

    H. Sun, L. Li, J. Wang, X. Cheng, and F. Zhou, Ironmak. Steelmak. 45, 708 (2017).

    Article  Google Scholar 

  17. 17.

    B. Lu, F. Qi, and W. Shen, J. Liu. Spec. Steel. 38, 40 (2017).

    Google Scholar 

  18. 18.

    E. Wang, E. Jiang, G. Zhan, and A. Deng, J. He. Mater. Sci. Forum. 706–709, 2480 (2012).

    Article  Google Scholar 

  19. 19.

    Y. Yu and B. Li, Acta Metall. Sin. 42, 540 (2006).

    Google Scholar 

  20. 20.

    K. Spitzer, Prog. Cryst. Growth Charact. Mater. 38, 59 (1999).

    Article  Google Scholar 

  21. 21.

    J. Pilling and A. Hellawell, Metall. Mater. Trans. 27A, 229 (1996).

    Article  Google Scholar 

  22. 22.

    T. Cool and P. Voorhees, Acta Mater. 127, 359 (2017).

    Article  Google Scholar 

  23. 23.

    X. Wang, S. Wang, L. Zhang, S. Sridhar, A. Conejo, and X. Liu, Metall. Mater. Trans. A 47, 5496 (2016).

    Article  Google Scholar 

  24. 24.

    L. Lu, K. Nogita, S. Mcdonald, and A. Dahle, JOM 56, 52 (2004).

    Article  Google Scholar 

  25. 25.

    T. Brune, K. Kortzak, D. Senk, N. Reuther, and M. Schäperkötter, Steel Res. Int. 86, 33 (2015).

    Article  Google Scholar 

  26. 26.

    S. Kunstreich, Metall. Res. Technol. 100, 1043 (2003).

    Google Scholar 

Download references


The authors are grateful for support from the National Science Foundation China (Grant No. 51574019), Open Project of State Key Laboratory of Advanced Special Steel, Shanghai University (SKLASS 2017-12), China, and Shougang Qian’an Iron and Steel Company.

Author information



Corresponding author

Correspondence to Min Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, X., Bao, Y. et al. Effect of Electromagnetic Stirring on the Solidification Behavior of High-Magnetic-Induction Grain-Oriented Silicon Steel Continuous Casting Slab. JOM 72, 3628–3633 (2020). https://doi.org/10.1007/s11837-020-04058-y

Download citation