Decrease of Material Burden in a Novel Alkali-Saving Reduction Treatment Process of Nickel Slag Based on NaOH Roasting

Abstract

Conventional reduction treatment methods for nickel slag show drawbacks such as high energy cost, heavy material burden or secondary pollution. Thus, a novel environmentally friendly reduction treatment method for high-silicon wastes, especially nickel slag, is proposed in this paper. The main characteristic is to lower the alkali–ore ratio (mass ratio of NaOH to ore) through introducing a high-speed premixing procedure before roasting. Optimal process parameters have been found experimentally, i.e., a roasting temperature of 823 K, alkali–ore ratio of 1.6:1, and roasting time of 30 min. The desilication ratio reached to 91.3 wt.%. Compared with previous NaOH roasting processes with stirring, the NaOH consumption is down by 60%, which greatly reduces the material burden. Through carbonation decomposition of the Na2SiO3 solution generated in the NaOH roasting, amorphous silica is recycled as the final product. The proposed method is expected to be a promising method for industrial reduction treatment of nickel slag.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Y.J. Gao, H.J. Huang, W.J. Tang, X.Y. Liu, X.Y. Yang, and J.B. Zhang, Microporous Mesoporous Mater. 217, 210 (2015).

    Article  Google Scholar 

  2. 2.

    J. Yang, X. Zhang, Y.Q. Liu, H.W. Ma, W.W. Feng, and C. Zeng, Integr. Ferroelectr. 161, 10 (2015).

    Article  Google Scholar 

  3. 3.

    W.N. Mu, X.Y. Lu, F.H. Cui, S.H. Luo, and Y.C. Zhai, Trans. Nonferr. Met. Soc. Chin 28, 169 (2018).

    Article  Google Scholar 

  4. 4.

    W.N. Mu, Doctoral dissertation (Northeastern University, 2009) (in Chinese).

  5. 5.

    C. Li and X. Qiao, Chem. Eng. J. 302, 388 (2016).

    Article  Google Scholar 

  6. 6.

    M. Iwao, M. Okuno, M. Koyano, and S. Katayama, J. Mineral. Petrol. Sci. 105, 135 (2010).

    Article  Google Scholar 

  7. 7.

    Y.C. Li, X.B. Min, Y. Ke, D.G. Liu, and C.J. Tang, Waste Manag 83, 202 (2019).

    Article  Google Scholar 

  8. 8.

    Y.B. Li, Z.M. Li, B. Wang, Z.M. Dong, and S.X. Song, Miner. Eng. 131, 376 (2019).

    Article  Google Scholar 

  9. 9.

    T.C. Alex, P. Kumar, S.K. Roy, and S.P. Mehrotra, Miner. Process. Extr. Metall. Rev. 37, 1 (2016).

    Article  Google Scholar 

  10. 10.

    A. Fedoročková, P. Raschman, G. Sučik, B. Plesingerová, Ľ. Popoviĉ, and J. Briančin, Ceram. -Silik. 59, 275 (2015).

    Google Scholar 

  11. 11.

    P.L. Zhang, Z.F. Liu, T.X. Liu, and Z.Q. Li, Eur. J. Inorg. Chem. 32, 5577 (2014).

    Article  Google Scholar 

  12. 12.

    C.C. Li and X.C. Qia, Chem. Eng. J. 302, 388 (2017).

    Article  Google Scholar 

  13. 13.

    H.W. Guo, J. Wang, X.X. Zhang, F. Zheng, and P. Li, Metall. Mater. Trans. B 49, 2906 (2018).

    Article  Google Scholar 

  14. 14.

    G.Z. Lu, T.G. Zhang, C. Cheng, W.G. Zhang, L. Wang, Y.X. Wang, and Z.M. Zhang, Mater. Res. Express. 6, 6 (2019).

    Google Scholar 

  15. 15.

    N.K. Mermer, M.S. Yilmaz, O.D. Oademir, and M.B. Piskin, J. Therm. Anal. Calorim. 129, 1807 (2017).

    Article  Google Scholar 

  16. 16.

    K.Z. Yan, Y.X. Guo, D.D. Liu, Z.B. Ma, and F.Q. Cheng, J. Solid State Chem. 265, 326 (2018).

    Article  Google Scholar 

  17. 17.

    J.N. Liu, X.Y. Shen, Y. Wu, J. Zhang, and Y.C. Zhai, Int. J. Miner. Metall. Mater. 23, 966 (2016).

    Article  Google Scholar 

  18. 18.

    A. Kongnoo, S. Tontisirin, P. Worathanakul, and C. Phalakomkule, Fuel 193, 385 (2017).

    Article  Google Scholar 

  19. 19.

    P.F. Fu, T.W. Yang, J. Feng, and H.F. Yang, J. Ind. Eng. Chem. 29, 338 (2015).

    Article  Google Scholar 

  20. 20.

    H. Du, L. Ma, X.Y. Liu, F. Zhang, X.Y. Yang, Y. Wu, and J.B. Zhang, Energy Fuels 32, 5374 (2018).

    Article  Google Scholar 

  21. 21.

    S.Q. Zhang, S. Ravi, Y.R. Lee, J.W. Ahn, and W.S. Ahn, J. Ind. Eng. Chem. 72, 241 (2018).

    Article  Google Scholar 

  22. 22.

    W. Chansiriwat, D. Tanangteerapong, and K. Wantala, Sains Malaysiana 45, 1723 (2016).

    Google Scholar 

  23. 23.

    C. Belviso, L.C. Giannossa, F.G. Huertas, A. Lettino, A. Mangone, and S. Fiore, Microporos Mesoporous Mater. 212, 35 (2015).

    Article  Google Scholar 

  24. 24.

    X.D. Wu, M.H. Fan, J.F. Mclaughlin, X.D. Shen, and G. Tan, Powder Technol. 323, 310 (2018).

    Article  Google Scholar 

  25. 25.

    Y. Cheng, M.S. Xia, F. Luo, N. Li, C.B. Guo, and C.D. Wei, Colloids Surf. A 490, 200 (2016).

    Article  Google Scholar 

  26. 26.

    W.B. Hu, M.M. Li, W. Chen, N. Zhang, B. Li, M. Wang, and Z.M. Zhao, Colloids Surf. A 501, 83 (2016).

    Article  Google Scholar 

  27. 27.

    C.L. Liu, S.L. Zheng, S.H. Ma, Y. Luo, J. Ding, X.H. Wang, and Y. Zhang, Fuel Process. Technol. 173, 40 (2018).

    Article  Google Scholar 

  28. 28.

    J. Baek, Y. Jo, J. Lee, S. Choi, and H. Jeong, J. Nanosci. Nanotechnol. 17, 2610 (2017).

    Article  Google Scholar 

  29. 29.

    A. Fedorockova, P. Raschman, G. Sucik, B. Plesingerova, L. Popovic, and J. Briancin, Ceram.-Silik. 59, 275 (2015).

    Google Scholar 

  30. 30.

    S. Parirenyatwa, L. Escudero-Castejon, S. Sanchez-Segado, Y. Hara, and A. Jha, Hydrometallurgy 165, 213 (2016).

    Article  Google Scholar 

  31. 31.

    H. Wang, Q.M. Feng, X.K. Tang, and K. Liu, Sep. Sci. Technol. 51, 2465 (2016).

    Article  Google Scholar 

  32. 32.

    X.Y. Deng, Y.L. Feng, H.R. Li, Z.W. Du, J.X. Kang, and C.L. Guo, Trans. Nonferr. Met. Soc. Chin 28, 1045 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The presented investigations have been supported by the National Basic Research Program of China (Grant No. 2007CB613603) and Project supported by National Natural Science Foundation of China (Grant No. 51774070). The authors kindly acknowledge these supports.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nan Xiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 362 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Hy., Xiang, N., Shen, Xy. et al. Decrease of Material Burden in a Novel Alkali-Saving Reduction Treatment Process of Nickel Slag Based on NaOH Roasting. JOM 72, 2686–2696 (2020). https://doi.org/10.1007/s11837-019-03914-w

Download citation