Skip to main content
Log in

Heating Mechanism of High Aluminum Fly Ash Activated by Na2CO3 in Microwave Field

  • Aluminum: Recycling and Environmental Footprint
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The microwave-absorption capabilities of high-alumina fly ash (HAFA), Na2CO3 and HAFA–Na2CO2 mixtures were investigated by determining the dielectric properties [real part (ε′), imaginary part (ε″) and dielectric loss tangent (tan δ)] from 25°C to 800°C, using the microwave resonant cavity technique at a microwave frequency of 2450 MHz. The mass ratio of the HAFA–Na2CO3 mixtures used in all experiments was 1:1. The study found that the microwave absorption capabilities of HAFA alone do not change significantly within the range of temperatures examined. For both Na2CO3 and HAFA–Na2CO3 mixtures, however, a sharp increase in absorption capability was observed above 400°C. The microwave heating behavior of the HAFA–Na2CO3 mixtures can be divided into two stages: in the first stage (< 350°C), heating rates were found to be lower due to the weaker microwave absorption capability of the HAFA and Na2CO3; however, in the second stage (≥ 350°C), a sharp increase in heating rate was observed, linked to the strengthened absorption capability of the Na2CO3. The study found that HAFA–Na2CO3 mixtures have a good microwave-absorption ability and can be heated rapidly by microwaves; therefore, it is feasible to use microwave heating for the activation of high-alumina fly ash with Na2CO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Z.T. Yao, M.S. Xia, P.K. Sarker, and T. Chen, Fuel 120, 75 (2014).

    Article  Google Scholar 

  2. R. Ji, Z. Zhang, C. Yan, M. Zhu, and Z. Li, Constr. Build. Mater. 114, 890 (2016).

    Article  Google Scholar 

  3. J. Xie, Z. Wang, D. Wu, and H. Kong, Fuel 116, 73 (2014).

    Article  Google Scholar 

  4. J. Liu, Y. Dong, X. Dong, S. Hampshire, L. Zhu, Z. Zhu, and L. Li, J. Eur. Ceram. Soc. 36, 1065 (2016).

    Google Scholar 

  5. Z.T. Yao, X.S. Ji, P.K. Sarker, J.H. Tang, L.Q. Ge, M.S. Xia, and Y.Q. Xi, Earth-Sci. Rev. 141, 111 (2015).

    Article  Google Scholar 

  6. A. Derkowski, W. Franus, E. Beran, and A. Czimerova, Powder Technol. 166, 50 (2006).

    Article  Google Scholar 

  7. A.K.H. Kwan and J.J. Chen, Powder Technol. 234, 20 (2013).

    Article  Google Scholar 

  8. M. Zhai, L. Guo, L. Sun, Y. Zhang, P. Dong, and W. Shi, Powder Technol. 305, 561 (2017).

    Article  Google Scholar 

  9. M. Zhu, R. Ji, Z. Li, H. Wang, L.L. Liu, and Z. Zhang, Constr. Build. Mater. 112, 402 (2016).

    Article  Google Scholar 

  10. M. Ansari, A. Aroujalian, A. Raisi, B. Dabir, and M. Fathizadeh, Adv. Powder Technol. 25, 725 (2014).

    Article  Google Scholar 

  11. M. Erol, S. Kucukbayrak, and A. Ersoymericboyu, J. Hazard. Mater. 153, 422 (2008).

    Article  Google Scholar 

  12. M. Erol, S. Kucukbayrak, and A. Ersoy-Mericboyu, Fuel 87, 1338 (2008).

    Article  Google Scholar 

  13. M. Izquierdo and X. Querol, Int. J. Coal Geol. 94, 60 (2012).

    Article  Google Scholar 

  14. D. Jain, C. Khatri, and A. Rani, Fuel Process. Technol. 91, 1018 (2010).

    Article  Google Scholar 

  15. V.C. Pandey and N. Singh, Agric. Ecosyst. Environ. 136, 24 (2010).

    Article  Google Scholar 

  16. A. Zhang, N. Wang, J. Zhou, J. Ping, and G. Liu, J. Hazard. Mater. 201, 70 (2012).

    Google Scholar 

  17. L. Qi and Y. Yuan, J. Hazard. Mater. 192, 223 (2011).

    Google Scholar 

  18. S. Dai, L. Zhao, S. Peng, C.L. Chou, X. Wang, Y. Zhang, D. Li, and Y. Sun, Int. J. Coal Geol. 81, 321 (2010).

    Article  Google Scholar 

  19. Y. Guo, Y. Li, F. Cheng, M. Wang, and X. Wang, Fuel Process. Technol. 110, 117 (2013).

    Article  Google Scholar 

  20. R.H. Matjie, J.R. Bunt, and J.H.P.V. Heerden, Miner. Eng. 18, 306 (2005).

    Google Scholar 

  21. H. Darvishi, M. Azadbakht, A. Rezaeiasl, and A. Farhang, J. Saudi Soc. Agric. Sci. 12, 125 (2013).

    Google Scholar 

  22. C.A. Crane, M.L. Pantoya, B.L. Weeks, and M. Saed, Powder Technol. 256, 116 (2014).

    Article  Google Scholar 

  23. Z. Wu, E.C. Gaudino, L. Rotolo, J. Medlock, W. Bonrath, and G. Cravotto, Chem. Eng. Process. 110, 223 (2016).

    Article  Google Scholar 

  24. A.F. Aguilera, P. Tolvanen, K. Eränen, S. Leveneur, and T. Salmi, Chem. Eng. Process. 102, 84 (2016).

    Article  Google Scholar 

  25. G. Lin, L. Zhang, L. Yang, T. Hu, and J. Peng, Green Process. Synth. 5, 60 (2016).

    Google Scholar 

  26. Q. Gao, H. Liu, C. Cheng, K. Li, J. Zhang, C. Zhang, and Y. Li, Powder Technol. 249, 236 (2013).

    Google Scholar 

  27. J. Kuang, W. Cao, and S. Elder, Synthesis of α-SiC particles at 1200°C by microwave heating. Powder Technol. 247, 108 (2013).

    Article  Google Scholar 

  28. M.P. And and K.J. Rao, Chem. Mater. 15, 2250 (2003).

    Google Scholar 

  29. T. Ebadzadeh, J. Alloys Compd. 489, 127 (2010).

    Article  Google Scholar 

  30. Y. Fang, J. Cheng, and D.K. Agrawal, Mater. Lett. 58, 499 (2004).

    Google Scholar 

  31. F. Satoru, I. Makoto, and H. Takashi, J. Am. Ceram. Soc. 83, 2086 (2010).

    Google Scholar 

  32. M. Oghbaei and O. Mirzaee, J. Alloys Compd. 41, 184 (2010).

    Google Scholar 

  33. J.H. Booske, R.F. Cooper, S.A. Freeman, K.I. Rybakov, and V.E. Semenov, Phys. Plasmas 5, 1668 (1998).

    Article  Google Scholar 

  34. S.A. Freeman, J.H. Booske, and R.F. Cooper, Phys. Rev. Lett. 74, 2042 (1995).

    Article  Google Scholar 

  35. M.A. Janney, H.D. Kimrey, W.R. Allen, and J.O. Kiggans, J. Mater. Sci. 32, 1350 (1997).

    Article  Google Scholar 

  36. N. Liu, J. Peng, L. Zhang, S. Wang, S. Huang, and S. He, J. Residuals Sci. Technol. 13, S186 (2016).

    Article  Google Scholar 

  37. Z.Y. Zhang, X.C. Qiao, and J.G. Yu, Fuel Process. Technol. 134, 308 (2015).

    Google Scholar 

  38. G. Lin, T. Hu, C. Liu, L. Zhang, J. Peng, and L. Yang, Arab. J. Sci. Eng. 43, 2330 (2017).

    Google Scholar 

  39. J.H. Jung, J.H. Cho, and S.Y. Kim, Meas. Sci. Technol. 27, 015011 (2016).

    Article  Google Scholar 

  40. V. Kresalek and M. Navratil, Microw. Opt. Technol. Lett. 57, 1544 (2015).

    Article  Google Scholar 

  41. P.M. Meaney, A.P. Gregory, J. Seppala, and T. Lahtinen, Microw. Theory Technol. 64, 920 (2016).

    Google Scholar 

  42. A. Vepsalainen, K. Chalapat, and G.S. Paraoanu, IEEE Trans. Instrum. Meas. 62, 2507 (2013).

    Article  Google Scholar 

  43. M. Ikeda, T. Fukunaga, and T. Miura, in 2003 IEEE MTT-S International Microwave Symposium Digest, vol. 1425, pp. 1–3 (2013).

Download references

Acknowledgements

The authors are grateful for the financial support by the National Key R& D Program of China (No. 2017YFB0603101) and the National Natural Science Foundation of China (51764034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tu Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 238 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Zhou, J., Zhang, L. et al. Heating Mechanism of High Aluminum Fly Ash Activated by Na2CO3 in Microwave Field. JOM 71, 2959–2965 (2019). https://doi.org/10.1007/s11837-019-03535-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03535-3

Navigation