Skip to main content
Log in

Dynamic Precipitation Behavior of a Mg-Zn-Ca-La Alloy During Deformation

  • Second-Phase Particles in Magnesium Alloys: Engineering for Properties and Performance
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The dynamic precipitation behavior of a Mg-Zn-Ca-La alloy during deformation has been investigated. A large amount of fine precipitates was detected after deformation, indicating that dynamic precipitation occurred. The precipitates at the grain boundaries included Ca2Mg6Zn3 and Mg4Zn7, whereas the intergranular precipitates were mainly Mg4Zn7. Ca, which has a large atomic radius, preferred to segregate to grain boundaries, where it resulted in the formation of Ca2Mg6Zn3. Zn, which has a similar diffusion coefficient to Mg, resulted in Mg4Zn7 being distributed around the matrix. The stability of the Mg4Zn7 phase was enhanced in the as-extruded Mg-Zn-Ca-La alloy. The grain-boundary precipitates acted as effective obstacles to grain growth, giving rise to the formation of a refined microstructure. The intragranular Mg4Zn7 precipitates hindered the mobility of dislocations, improving the mechanical properties. Additionally, a high density of ultrafine nanoparticles was detected in the un-dynamically recrystallized (DRXed) region, being related to the high density of dislocations therein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Cihova, R. Schäublin, L.B. Hauser, S.S.A. Gerstl, C. Simson, P.J. Uggowitzer, and J.F. Löffler, Acta Mater. 158, 214 (2018).

    Article  Google Scholar 

  2. B. Kim, S.-M. Baek, J.G. Lee, and S.S. Park, J. Alloys Compd. 706, 56 (2017).

    Article  Google Scholar 

  3. J. Jiang, M. Song, H. Yan, C. Yang, and S. Ni, Mater. Charact. 121, 135 (2016).

    Article  Google Scholar 

  4. C.L. Mendis, K.U. Kainer, and N. Hort, JOM US 67, 2427 (2015).

    Article  Google Scholar 

  5. S.M. Jo, S.D. Kim, T.-H. Kim, Y. Go, C.-W. Yang, B.S. You, and Y.M. Kim, J. Alloys Compd. 749, 794 (2018).

    Article  Google Scholar 

  6. Y. Zhou, Z. Chen, J. Ji, and Z. Sun, Mater. Sci. Eng. A 707, 110 (2017).

    Article  Google Scholar 

  7. M. Liu, Z. Wu, R. Yang, J. Wei, Y. Yu, P.C. Skaret, and H.J. Roven, Prog. Nat. Sci. Mater. Int. 25, 153 (2015).

    Article  Google Scholar 

  8. Y. Du, M. Zheng, B. Jiang, and K. Zhou, JOM US 70, 1611 (2018).

    Article  Google Scholar 

  9. T.T. Sasaki, F.R. Elsayed, T. Nakata, T. Ohkubo, S. Kamado, and K. Hono, Acta Mater. 99, 176 (2015).

    Article  Google Scholar 

  10. T.T. Sasaki, J.D. Ju, K. Hono, and K.S. Shin, Scr. Mater. 61, 80 (2009).

    Article  Google Scholar 

  11. Y.Z. Du, X.G. Qiao, M.Y. Zheng, D.B. Wang, K. Wu, and I.S. Golovin, Mater. Des. 98, 285 (2016).

    Article  Google Scholar 

  12. H. Okamoto, J. Phase Equilib. 16, 474 (1995).

    Google Scholar 

  13. L. Wei, G. Dunlop, and H. Westengen, Metall. Mater. Trans. A 26, 1705 (1995).

    Article  Google Scholar 

  14. S. Wei, T. Zhu, H. Hou, J. Kim, E. Kobayashi, T. Sato, M. Hodgson, and W. Gao, Mater. Sci. Eng. A 597, 52 (2014).

    Article  Google Scholar 

  15. J. Geng, X. Gao, X.Y. Fang, and J.F. Nie, Scr. Mater. 64, 506 (2011).

    Article  Google Scholar 

  16. H. Somekawa, A. Singh, and T. Mukai, Scr. Mater. 60, 411 (2009).

    Article  Google Scholar 

  17. T. Bhattacharjee, T. Nakata, T.T. Sasaki, S. Kamado, and K. Hono, Scr. Mater. 90–91, 37 (2014).

    Article  Google Scholar 

  18. H. Somekawa, M. Yamaguchi, Y. Osawa, A. Singh, M. Itakura, T. Tsuru, and T. Mukai, Philos. Mag. 95, 869 (2015).

    Article  Google Scholar 

  19. Y. Du, M. Zheng, X. Qiao, D. Wang, W. Peng, K. Wu, and B. Jiang, Mater. Sci. Eng. A 656, 67 (2016).

    Article  Google Scholar 

  20. L. Ye, Y. Liu, D.S. Zhao, Y.L. Zhuang, S.B. Gao, X.Q. Liu, J.P. Zhou, J.N. Gui, and J.B. Wang, Mater. Sci. Eng. A 724, 121 (2018).

    Article  Google Scholar 

  21. A. Hadadzadeh, F. Mokdad, B.S. Amirkhiz, M.A. Wells, B.W. Williams, and D.L. Chen, Mater. Sci. Eng. A 724, 421 (2018).

    Article  Google Scholar 

  22. C.L. Mendis, K. Oh-ishi, Y. Kawamura, T. Honma, S. Kamado, and K. Hono, Acta Mater. 57, 749 (2009).

    Article  Google Scholar 

  23. Y.Z. Du, X.G. Qiao, M.Y. Zheng, K. Wu, and S.W. Xu, Mater. Des. 85, 549 (2015).

    Article  Google Scholar 

  24. C. Chen, J. Chen, H. Yan, B. Su, M. Song, and S. Zhu, Mater. Des. 100, 58 (2016).

    Article  Google Scholar 

  25. J. Hofstetter, S. Rüedi, I. Baumgartner, H. Kilian, B. Mingler, E. Povoden-Karadeniz, S. Pogatscher, P.J. Uggowitzer, and J.F. Löffler, Acta Mater. 98, 423 (2015).

    Article  Google Scholar 

  26. Y.Z. Du, M.Y. Zheng, X.G. Qiao, K. Wu, X.D. Liu, G.J. Wang, and X.Y. Lv, Mater. Sci. Eng. A 582, 134 (2013).

    Article  Google Scholar 

  27. F. Bachmann, R. Hielscher, and H. Schaeben, Solid State Phenom. 160, 63 (2010).

    Article  Google Scholar 

  28. K. Huang, K. Marthinsen, Q. Zhao, and R.E. Logé, Prog. Mater Sci. 92, 284 (2018).

    Article  Google Scholar 

  29. J.D. Robson, D.T. Henry, and B. Davis, Acta Mater. 57, 2739 (2009).

    Article  Google Scholar 

  30. J.D. Robson, D.T. Henry, and B. Davis, Mater. Sci. Eng. A 528, 4239 (2011).

    Article  Google Scholar 

  31. J.B. Yang, Y.N. Osetsky, R.E. Stoller, Y. Nagai, and M. Hasegawa, Scr. Mater. 66, 761 (2012).

    Article  Google Scholar 

  32. V.K. Lindroos and H.M. Miekk-Oja, Philos. Mag. J. Theor. Exp. Appl. Phys. 16, 593 (1967).

    Google Scholar 

  33. S.P. Agrawal, G.A. Sargent, and H. Conrad, Metall. Trans. 5, 2415 (1974).

    Article  Google Scholar 

  34. C. Mendis, K. Oh-Ishi, and K. Hono, Metall. Mater. Trans. A 43, 3978 (2012).

    Article  Google Scholar 

  35. P.M. Jardim, G. Solorzano, and J.B. Vander Sande, Microsc. Microanal. 8, 487 (2002).

    Article  Google Scholar 

  36. J.R. TerBush, N. Stanford, J.-F. Nie, and M.R. Barnett, Metall. Mater. Trans. A 44, 5216 (2013).

    Article  Google Scholar 

  37. T. Bhattacharjee, C.L. Mendis, T.T. Sasaki, T. Ohkubo, and K. Hono, Scr. Mater. 67, 967 (2012).

    Article  Google Scholar 

  38. J.C. Slater, J. Chem. Phys. 41, 3199 (1964).

    Article  Google Scholar 

  39. A. Takeuchi and A. Inoue, Mater. Trans. 46, 2817 (2005).

    Article  Google Scholar 

  40. H.-T. Ma, R. Yuan, Y.-P. Xie, H. Gao, L.-J. Hu, X.-D. Li, Y.-C. Qian, and Z.-H. Dai, Acta Mater. 147, 42 (2018).

    Article  Google Scholar 

  41. C. Liu, H. Chen, and J.-F. Nie, Scr. Mater. 123, 5 (2016).

    Article  Google Scholar 

  42. Z.R. Zeng, Y.M. Zhu, S.W. Xu, M.Z. Bian, C.H.J. Davies, N. Birbilis, and J.F. Nie, Acta Mater. 105, 479 (2016).

    Article  Google Scholar 

  43. T.T. Sasaki, K. Yamamoto, T. Honma, S. Kamado, and K. Hono, Scr. Mater. 59, 1111 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for support from the National Natural Science Foundation of China (No. 51801150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhou Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Ge, Y. & Jiang, B. Dynamic Precipitation Behavior of a Mg-Zn-Ca-La Alloy During Deformation. JOM 71, 2202–2208 (2019). https://doi.org/10.1007/s11837-019-03468-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03468-x

Navigation