Skip to main content
Log in

The Structure of the Smelting Cell Ledge Under Variable Sidewall Heat Flow Conditions

  • Primary Aluminum Production Chain: Bauxite-Alumina-Electrode-Reduction
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The power input to most smelters has become more variable and cell voltages have been continually reduced, giving rise to bath superheat in the 3-6°C range in many cases. The effect on the structure of the ledge is now being investigated since it also impacts heat balance shifting for smelter power flexibility, which is an inevitable consequence of continental network. Shell Heat Exchanger technology has been created to achieve the heat balance shifting by regulating sidewall heat loss with low superheat and variable cell power input. This article provides new information about the structure of the ledge material under the influence of these factors and discusses the implications for future smelter operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.P. Taylor, The influence of process dynamics on the heat balance & cell operation in electrowinning of aluminium, in Chemical & Materials Engineering, Ph.D. Thesis (The University of Auckland, Auckland, 1984).

  2. M.P. Taylor and B.J. Welch, Metall. Trans. B 18, 391 (1987).

    Article  Google Scholar 

  3. J. Thonstad and S. Rolseth, Light Met. 1983, 415 (1983).

    Google Scholar 

  4. A. Solheim, Light Metals 2011, ed. S.J. Lindsay (Warrendale, PA: TMS, 2011), 381–386.

    Google Scholar 

  5. A. Solheim, N.H. Giskeødegård, and N.J. Holt, Light Met. 2016, 333 (2016).

    Google Scholar 

  6. X. Liu, Fifth Australasian Aluminium Smelter Technology Workshop. Sydney, Australia (1995).

  7. M.P. Taylor, B.J. Welch, and R. McKibbin, AIChE 32, 1459 (1986).

    Article  Google Scholar 

  8. A. Solheim and L.I.R. Stoen, Light Metals 1997, ed. R. Huglen (Warrendale, PA: TMS, 1997), 325–332.

    Google Scholar 

  9. A. Solheim, H. Gudbrandsen, and S. Rolseth. Light Metals 2009, ed. G. Bearne (Warrendale, PA: TMS, 2009), 411.

    Google Scholar 

  10. X.Y. Yan, P. Hayes, E. Jak, and S. Phil. 10th Australasian Aluminium Smelting Technology Conference, Launceston, Australia (2011).

  11. A. Fallah-Mehrjardi, P.C. Hayes, and E. Jak, Metall. Trans. B 45, 1232 (2014).

    Article  Google Scholar 

  12. S. Poncsák, L. Kiss, R. St-Pierre, S. Guérard, and J.F. Bilodeau, Light Metals 2014, ed. J. Grandfield (Warrendale, PA: TMS, 2014), 585–589.

    Google Scholar 

  13. S. Poncsák, L. Kiss, A. Belley, S. Guérard, and J.F. Bilodeau, Light Metals 2015, ed. M.M. Hyland (Warrendale, PA: TMS, 2015), 655–659.

    Chapter  Google Scholar 

  14. S. Poncsák, L. Kiss, V.D. Raymond, C. Kaszás, S. Guérard, and J.F. Bilodeau, Light Metals 2016, ed. E. Williams (Warrendale, PA: TMS, 2016), 359–364.

    Google Scholar 

  15. S. Poncsák, L.I. Kiss, S. Guérard, and J.F. Bilodeau, Metals 7, 1 (2017).

    Google Scholar 

  16. T. Reek. 11th Australasian Aluminium Smelting Technology Conference. Dubai, UAE (2014).

  17. H. Zhang, L. Ran, J. Liang, T. Li, K. Sun, and J. Li, Light Metals 2018, ed. O. Martin (Warrendale, PA: TMS, 2018), 587–596.

    Chapter  Google Scholar 

  18. X. Cui, H. Zhang, Zh. Zou, J. Li, Y. Lai, Y. Xu, H. Zhang, and X. Lv, Light Metals 2010, ed. J.A. Johnson (Warrendale, PA: TMS, 2010), 447–452.

    Google Scholar 

  19. X. Lv, Ch. Zhang, Y. Lai, Z. Tian, M. Jia, and J. Li, Light Metals 2014, ed. J. Grandfield (Warrendale, PA: TMS, 2014), 579–583.

    Google Scholar 

  20. B. Sachs, I. Eick, G. Bellinghausen, K. Tschöpe, and R. Jørgensen, 35th International ICOSOBA Conference, Hamburg, Germany (2017).

  21. P. Lavoie, S. Namboothiri, M. Dorreen, J.J. Chen, D.P. Zeigler, and M.P. Taylor, Light Metals 2011, ed. S.J. Lindsay (Warrendale, PA: TMS, 2011), 367–374.

    Chapter  Google Scholar 

  22. S. Namboothiri, P. Lavoie, D. Cotton, and M.P. Taylor, Light Metals 2009, ed. G. Bearne (Warrendale, PA: TMS, 2009), 317–322.

    Google Scholar 

  23. M.P. Taylor, B.J. Welch, and J.T. Keniry, Light Metals 1983, ed. E.M. Adkins (Warrendale, PA: TMS, 1983), 437–447.

    Google Scholar 

  24. J. Liu, M. Taylor, and M. Dorreen, Metall. Trans. B 48, 1079 (2017).

    Article  Google Scholar 

  25. J. Liu, M. Taylor, and M. Dorreen, Light Metals 2016, ed. E. Williams (Warrendale, PA: TMS 2016), 601–605.

    Google Scholar 

  26. J. Liu, M. Taylor, and M. Dorreen, IJMR 108, 507 (2017).

    Article  Google Scholar 

  27. J. Liu, M. Taylor, and M. Dorreen, Metall. Trans. B 49, 238 (2018).

    Article  Google Scholar 

  28. J. Liu, M. Taylor, and M. Dorreen, Metall. Trans. B 48, 3185 (2017).

    Article  Google Scholar 

  29. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, and A.D. Pelton, FactSage thermochemical software and databases, 2010–2016. Calphad 54, 35 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

MBIE funding is gratefully acknowledged for this work, under Grant UOAX1308.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Taylor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wei, S. & Taylor, M. The Structure of the Smelting Cell Ledge Under Variable Sidewall Heat Flow Conditions. JOM 71, 514–521 (2019). https://doi.org/10.1007/s11837-018-3247-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3247-8

Navigation