Skip to main content

Advertisement

Log in

Structure and Magnetic Properties of Heat-Resistant Sm(Co0.796−xFe0.177CuxZr0.027)6.63 Permanent Magnets with High Coercivity

  • Advanced Nanocomposite Materials: Structure-Property Relationships
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The structure and temperature stability of high-temperature permanent magnets Sm(Co0.796−xFe0.177CuxZr0.027)6.63 (x = 0.117 and 0.130) were studied using x-ray diffraction analysis, thermomagnetic analysis, and scanning and transmission electron microscopy. The magnets have a nanocrystalline cellular structure composed of the R2:17 cell phase, 1:5 boundary phase (27–28% by volume), and Z-phase platelets. The 1:5 phase is formed in the course of isothermal annealing at 850°C and exists in the entire temperature range from 850°C to 400°C. The Curie temperature of the R2:17 and 1:5 phases is approximately 815°C and 580°C, respectively. The magnets have the following hysteresis properties at room temperature: Br = 890–920 mT, JHc = 2.4–2.6 MA/m, BHc = 629–676 kA/m, and (BH)m = 143–159 kJ/m3. In the temperature range of 20–500°C, the temperature coefficients of Br and JHc of the magnets (x = 0.117 and 0.130) do not exceed |− 0.070| and |− 0.172|%/°C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Rabenberg, R.K. Mishra, and G. Thomas, J. Appl. Phys. 53, 2389 (1982).

    Article  Google Scholar 

  2. J. Fidler and P. Skalicky, J. Magn. Magn. Mater. 27, 127 (1982).

    Article  Google Scholar 

  3. Y.I. Teytel, A.G. Popov, V.G. Maykov, L.M. Magat, N.N. Shchegoleva, and Y.S. Shur, Fiz. Met. I Metalloved. 55, 349 (1983).

    Google Scholar 

  4. R.K. Mishra, G. Thomas, T. Yoneyama, A. Fukuno, and T. Ojima, J. Appl. Phys. 52, 2517 (1981).

    Article  Google Scholar 

  5. R.M.W. Strnat, S. Liu, and K.J. Strnat, J. Appl. Phys. 53, 2380 (1982).

    Article  Google Scholar 

  6. S. Liu, H.F. Mildrum, and K.J. Strnat, J. Appl. Phys. 53, 2383 (1982).

    Article  Google Scholar 

  7. A.G. Popov, A.V. Korolev, and N.N. Shchegoleva, Phys. Met. Metallogr. 69, 100 (1990).

    Google Scholar 

  8. J.F. Liu, T. Chui, D. Dimitrov, and G.C. Hadjipanayis, Appl. Phys. Lett. 73, 3007 (1998).

    Article  Google Scholar 

  9. C.H. Chen, M.S. Walmer, M.H. Walmer, S. Liu, E. Kuhl, and G. Simon, J. Appl. Phys. 83, 6706 (1998).

    Article  Google Scholar 

  10. J.F. Liu, Y. Ding, Y. Zhang, D. Dimitar, F. Zhang, and G.C. Hadjipanayis, J. Appl. Phys. 85, 5660 (1999).

    Article  Google Scholar 

  11. C.H. Chen, M.S. Walmer, M.H. Walmer, J. Liu, S. Liu, and G.E. Kuh, J. Appl. Phys. 87, 6719 (2000).

    Article  Google Scholar 

  12. Y. Zhang, M. Corte-Real, G.C. Hadjipanayis, J. Liu, M.S. Walmer, and K.M. Krishnan, J. Appl. Phys. 87, 6722 (2000).

    Article  Google Scholar 

  13. G.C. Hadjipanayis, W. Tang, Y. Zhang, S.T. Chui, J.F. Liu, C. Chen, and H. Kronmuller, IEEE Trans. Magn. 36, 3382 (2000).

    Article  Google Scholar 

  14. W. Tang, A.M. Gabay, Y. Zhang, G.C. Hadjipanayis, and H. Kronmuller, IEEE Trans. Magn. 37, 2515 (2001).

    Article  Google Scholar 

  15. W. Tang, Y. Zhang, A.M. Gabay, and G.C. Hadjipanayis, J. Magn. Magn. Mater. 242, 1335 (2002).

    Article  Google Scholar 

  16. J.F. Liu and M.S. Walmer, 18th International Workshop on High Performance Magnets and their Applications, eds. P. de Rango and N.M. Dempsey (Annecy, France, 2004), pp. 630–636.

  17. D. Goll, H. Kronmüller, and H.H. Stadelmaier, J. Appl. Phys. 96, 6534 (2004).

    Article  Google Scholar 

  18. G. Wang and C. Jiang, J. Appl. Phys. 112, 33909 (2012).

    Article  Google Scholar 

  19. G. Wang, L. Zheng, and C. Jiang, J. Magn. Magn. Mater. 343, 173 (2013).

    Article  Google Scholar 

  20. H. Sepehri-Amin, J. Thielsch, J. Fischbacher, T. Ohkubo, T. Schrefl, O. Gutfleisch, and K. Hono, Acta Mater. 126, 1 (2017).

    Article  Google Scholar 

  21. H. Kronmüller and D. Goll, Scr. Mater. 47, 545 (2002).

    Article  Google Scholar 

  22. R. Gopalan, T. Ohkubo, and K. Hono, Scr. Mater. 54, 1345 (2006).

    Article  Google Scholar 

  23. D. Goll, H.H. Stadelmaier, and H. Kronmüller, Scr. Mater. 63, 243 (2010).

    Article  Google Scholar 

  24. H.H. Stadelmaier, H. Kronmüller, and D. Goll, Scr. Mater. 63, 843 (2010).

    Article  Google Scholar 

  25. K. Song, W. Sun, H. Chen, N. Yu, Y. Fang, M. Zhu, and W. Li, AIP Adv. 7, 056238 (2017).

    Article  Google Scholar 

  26. M. Palit, D.M. Rajkumar, S. Pandian, and S.V. Kamat, Mater. Chem. Phys. 179, 214 (2016).

    Article  Google Scholar 

  27. H. Machida, T. Fujiwara, R. Kamada, Y. Morimoto, and M. Takezawa, AIP Adv. 7, 056223 (2017).

    Article  Google Scholar 

  28. A.G. Popov, O.A. Golovnia, A.V. Protasov, V.S. Gaviko, R. Gopalan, C. Jiang, and T. Zhang, IEEE Trans. Magn. 54, 2100907 (2018).

    Article  Google Scholar 

  29. S. Bance, J. Fischbacher, A. Kovacs, H. Oezelt, F. Reichel, and T. Schrefl, JOM 67, 1350 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (Grant No. 17-52-80072) and DST-BRICS and the state assignment of FASO of Russia (topic “Magnet” no. AAAA-A18-118020290129-5). The x-ray diffraction investigation and magnetic measurements were performed at the Center of Collaborative Access of IMP UB RAS. The funding was provided by Department of Science and Technology, Ministry of Science and Technology (Grant No. 258).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Golovnia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, A.G., Gaviko, V.S., Popov, V.V. et al. Structure and Magnetic Properties of Heat-Resistant Sm(Co0.796−xFe0.177CuxZr0.027)6.63 Permanent Magnets with High Coercivity. JOM 71, 559–566 (2019). https://doi.org/10.1007/s11837-018-3240-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3240-2

Navigation