Skip to main content
Log in

Influence of Coil Configuration and Operating Conditions on Heat Transfer in Inductively Heated Risers

  • CFD Modeling and Simulation in Materials Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Electromagnetic (EM) induction heating of open top risers represents an energy-efficient method to preserve mass feeding whilst allowing for the use of a smaller riser and thus higher casting yield. Numerical simulation results for an ill-designed, concentric riser and casting assembly predicting the EM field characteristics and solidification behavior in such systems are presented herein. A vector potential formulation of the EM field was used and solved using a hybrid control volume/integral method, featuring temperature-dependent electrical conductivity. The heat transfer equation with phase change was also solved using the control volume technique. The computed results showed that use of induction heating could shift the hot spot from the casting to the riser. It was also found that use of higher coil frequencies produced a guard heating effect at the periphery of the riser, which was then applied using a new L-shaped coil geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.F. Schifo and J.T. Radia, Theoretical/Best Practice Energy Use in Metalcasting Operations (Keramida Environmental, 2004), https://www.energy.gov/sites/prod/files/2013/11/f4/doebestpractice_052804.pdf. Accessed 15 Sept 2015.

  2. K. Kermeli, R. Deuchler, E. Worrell, and E. Masanet, Energy Efficiency and Cost Saving Opportunities for Metal Casting: An ENERGY STAR Guide for Energy and Plant Managers (US Department of Energy, 2016), https://www.energystar.gov/buildings/tools-and-resources/energy_efficiency_and_cost_saving_opportunities_metal_casting. Accessed 15 Sept 2015.

  3. N. Chvorinov, Giesserei 27, 177 (1940).

    Google Scholar 

  4. R.L. Lewis, Optimization of Casting Rigging Design, MS Thesis, The Ohio State University, 1983.

  5. I. Ciobanu, S. Munteanu, A. Crisan, T. Bedo, and V. Monescu, Int. J. Metalcast. 8, 63 (2014).

    Article  Google Scholar 

  6. R.A. Flinn, Fundamentals of Metal Casting (Boston: Addison-Wesley, 1963).

    Google Scholar 

  7. H.F. Bishop, E.T. Myskowski, and W.S. Pellini, AFS Trans. 63, 271 (1955).

    Google Scholar 

  8. H.D. Merchant, in AFS Transaction Proceedings of the 63rd Annual Meeting, p. 13 (1959).

  9. S. Kossy and R.F. Boddey, Exothermically Reacting Sleeve for Risers, US Patent 2,591,105, 1952, https://patents.google.com/patent/US2591105. Accessed 23 June 2018.

  10. A.C. Midea, Foundry Manag. Technol. 127, 50 (1999).

    Google Scholar 

  11. Z. Ignaszak and P. Popielarski, Mater. Sci. Forum 514, 1438 (2006).

    Article  Google Scholar 

  12. R.A. Hardin, T.J. Williams, and C. Beckermann, Riser Sleeve Properties for Steel Castings and the Effect of Sleeve Type on Casting Yield, MS Thesis, University of Iowa, 2013.

  13. T.J. Williams, Determination of Effective Riser Sleeve Thermophysical Properties for Simulation and Analysis of Riser Sleeve Performance, MS Thesis, University of Iowa, 2016.

  14. R.C. Aufderheide, R.E. Showman, J. Close, and E.J. Zins, in AFS Transaction Proceedings of the 106th Annual Congress, p. 917 (2002).

  15. S. Zinn and S.L. Semiatin, Elements of Inducation Heating (Materials Park: ASM International, 1988).

    Google Scholar 

  16. C.J. Xu, Y.X. Zeng, Z.L. Wang, J. Li, S.L. Li, and X.J. Zhang, Metallurgija 55, 593 (2016).

    Google Scholar 

  17. S. Tonseth, Making Greener Ship Propellers (ScienceNordic, 2014), http://sciencenordic.com/making-greener-ship-propellers. Accessed 11 Oct 2016.

  18. S. Takahashi, Y. Nakagawa, and Y. Hosoda, Method for Heating a Riser of Molten Refractory Material, US Patent 4,460,524, 1984.

  19. K. Hirayama, Y. Matsubara, A. Sakai, T. Sugiyama, K. Yokoo, T. Yamashita, T. Hirayama, H. Sugihara, K. Matsuo, and A. Yokoi, Metal Casting Method, Japanese Patent 4,494,868, 1997.

  20. G. Poole and L. Nastac, J. Manuf. Sci. Prod. 15, 13 (2015).

    Google Scholar 

  21. M.R. Cox and G.M. Poole, Numerical simulation of electromagnetic and heat transfer phenomena in inductively heated risers.CFD Modeling and Simulation in Materials Processing 2018, ed. L. Nastac, K. Pericleous, A. Sabau, L. Zhang, and B. Thomas (New York: Springer, 2018), pp. 53–62.

    Chapter  Google Scholar 

  22. J.L. Meyer, N. El-Kaddah, and J. Szekely, IEEE Trans. Magn. 23, 1806 (1987).

    Article  Google Scholar 

  23. S.V. Patankar, Numerical Heat Transfer and Fluid Flow (New York: Hemisphere, 1980).

    MATH  Google Scholar 

  24. J. Szekely and N.J. Themelis, Rate Phenomena in Process Metallurgy (New York: Wiley, 1971).

    Google Scholar 

  25. A. De and T. DebRoy, Sci. Techol. Weld Join 11, 143 (2006).

    Article  Google Scholar 

  26. N.V. Kopchenova and I.A. Maron, Computational Mathematics (Moscow: Mir, 1972), pp. 63–67.

    Google Scholar 

  27. K.C. Mills, Recommended Values of Thermophysical Properties for Selected Commercial Alloys (Cambridge: Woodhead, 2002), pp. 50–53.

    Google Scholar 

  28. S.I. Bakhtiyarov, R.A. Overfelt, and S.G. Teodorescu, J. Mater. Sci. 26, 4643 (2001).

    Article  Google Scholar 

  29. Zircar Refractory Composites, RSLE-501 Cylinders (December 2017), http://www.zrci.com/wdpr/wp-content/uploads/2018/03/ZRCI-201-Rev-12-27-17.pdf. Accessed 03 Mar 2018.

  30. F.P. Incropera and D.P. Dewitt, Fundamentals of Heat Transfer, 2nd ed. (New York: Wiley, 1981).

    Google Scholar 

  31. W. Kurz and D.J. Fisher, Fundamentals of Solidification (Rockport: Trans Tech Publications, 1986).

    Google Scholar 

  32. T. Campanella, C. Charbon, and M. Rappaz, Scr. Mater. 49, 1029 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory M. Poole.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poole, G.M., Cox, M.R. Influence of Coil Configuration and Operating Conditions on Heat Transfer in Inductively Heated Risers. JOM 71, 40–47 (2019). https://doi.org/10.1007/s11837-018-3201-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3201-9

Navigation