Skip to main content
Log in

Fluid Flow and Inclusion Behavior Around Spherical-Cap Bubbles

  • CFD Modeling and Simulation in Materials Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The fluid flow and inclusion behavior around a spherical-cap bubble in molten steel is investigated by the computational model in a two-dimensional axisymmetric domain. Discrete phase model is employed to describe the trajectory of inclusion through the flow field around the bubble, and a stochastic tracking model is adopted to account for the dispersion of inclusions due to turbulence. Increasing the level of turbulence kinetic energy causes the effective attachment radius and the overall attachment probability to increase. Larger inclusions have a larger attachment probability. The wake region grows larger as the turbulence becomes weaker. The entrapment of inclusions by the bubble wake is also considered and the entrapment probability is calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.V. Nguyen, J. Ralston, and H.J. Schulze, Int. J. Miner. Process. 53, 225 (1998).

    Article  Google Scholar 

  2. L. Zhang and S. Taniguchi, Int. Mater. Rev. 45, 59 (2000).

    Article  Google Scholar 

  3. H.J. Schulze, Miner. Process. Extr. Met. Rev. 5, 43 (1989).

    Article  Google Scholar 

  4. A.V. Nguyen, Int. J. Miner. Process. 37, 1 (1993).

    Article  Google Scholar 

  5. M. Soder, P. Jonsson, and L. Jonsson, Steel Res. Int. 75, 128 (2004).

    Article  Google Scholar 

  6. L. Zhang, J. Aoki, and B.G. Thomas, Metall. Mater. Trans. B 37, 361 (2006).

    Article  Google Scholar 

  7. V.D. Felice, I.L.A. Daoud, B. Dussoubs, A. Jardy, and J.-P. Bellot, ISIJ Int. 52, 1273 (2012).

    Article  Google Scholar 

  8. W. Lou and M. Zhu, ISIJ Int. 54, 9 (2014).

    Article  Google Scholar 

  9. W. Lou and M. Zhu, Metall. Mater. Trans. B 44, 762 (2013).

    Article  Google Scholar 

  10. J. Meng, E. Tabosa, W. Xie, K. Runge, D. Bradshaw, and E. Manlapig, Miner. Eng. 95, 79 (2016).

    Article  Google Scholar 

  11. A.V. Nguyen, D.-A. An-Vo, T. Tran-Cong, and G.M. Evans, Int. J. Miner. Process. 156, 75 (2016).

    Article  Google Scholar 

  12. M. Firouzi, A.V. Nguyen, and S.H. Hashemabadi, Miner. Eng. 24, 973 (2011).

    Article  Google Scholar 

  13. T.Y. Liu and M.P. Schwarz, Int. J. Miner. Process. 90, 45 (2009).

    Article  Google Scholar 

  14. T.Y. Liu and M.P. Schwarz, Chem. Eng. Sci. 64, 5287 (2009).

    Article  Google Scholar 

  15. Y. Gao, G.M. Evans, E.J. Wanless, and R. Moreno-Atanasio, Adv. Powder Technol. 25, 1177 (2014).

    Article  Google Scholar 

  16. R. Maxwell, S. Ata, E.J. Wanless, and R. Moreno-Atanasio, J. Colloid Interface Sci. 381, 1 (2012).

    Article  Google Scholar 

  17. H. Duan, Y. Ren, and L. Zhang, JOM 70, 2128 (2018).

  18. H. Duan, L. Zhang, B.G. Thomas, and A.N. Conejo, Metall. Mater. Trans. B 49, 2722 (2018).

  19. R.M. Wellek, A.K. Agrawal, and A.H.P. Skelland, AIChE J. 12, 854 (1966).

    Article  Google Scholar 

  20. H. Tokunaga, M. Iguchi, and H. Tatemichi, Metall. Mater. Trans. B 30, 61 (1999).

    Article  Google Scholar 

  21. Y. Sahai and R.I.L. Guthrie, Metall. Trans. B 13, 193 (1982).

    Article  Google Scholar 

  22. M. Iguchi, H. Tokunaga, and H. Tatemichi, Metall. Mater. Trans. B 28, 1053 (1997).

    Article  Google Scholar 

  23. J.T. Kuo and G.B. Wallis, Int. J. Multiph. Flow 14, 547 (1988).

    Article  Google Scholar 

  24. R.M. Davies and G. Taylor, Proc. R. Soc. Lond. A 200, 375 (1950).

    Article  Google Scholar 

  25. I. Komasawa, T. Otake, and M. Kamojima, J. Chem. Eng. Jpn. 13, 103 (1980).

    Article  Google Scholar 

  26. I. Yabe and D. Kunii, Kagaku Kogaku Ronbun 2, 144 (1976).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for support from the National Science Foundation China (Grant Nos. 51725402 and 51504020), the Fundamental Research Funds for the Central Universities (Grant Nos. FRF-TP-15-001C2 and 2015021642901), Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM) and the High Quality steel Consortium (HQSC) at the School of Metallurgical and Ecological Engineering at University of Science and Technology Beijing (USTB), China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Ren or Lifeng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, H., Scheller, P.R., Ren, Y. et al. Fluid Flow and Inclusion Behavior Around Spherical-Cap Bubbles. JOM 71, 69–77 (2019). https://doi.org/10.1007/s11837-018-3193-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3193-5

Navigation