Skip to main content

Advertisement

Log in

Carbochlorination Kinetics of High-Alumina Fly Ash

  • Primary Aluminum Production Chain: Bauxite-Alumina-Electrode-Reduction
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The carbochlorination kinetics of high-alumina fly ash was investigated. The influence of reaction temperature, time, carbon content, pellet diameter, and Cl2 flow rate on the reaction was analyzed. The morphological changes of the samples during the reaction showed that different sizes of spherical particles disappeared entirely after the carbochlorination process. For carbochlorination of alumina, two kinetic regimes were identified, with activation energy of 68.84 kJ mol−1 and 20.82 kJ mol−1, being attributed to chemical reaction control (below 900°C) and diffusion control (at high temperatures). For silica, the dominant kinetic regime was chemical reaction control, with activation energy of 92.45 kJ mol−1 between 950°C and 1050°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z. Sun, H. Li, W. Bao, and C. Wang, Int. J. Miner. Process. 153, 109 (2016).

    Article  Google Scholar 

  2. L. Qi and Y. Yuan, J. Hazard. Mater. 192, 222 (2011).

    Google Scholar 

  3. Y. Wu, P. Xu, J. Chen, L. Li, and M. Li, Chin. J. Chem. Eng. 22, 1363 (2014).

    Article  Google Scholar 

  4. L. Sun, K. Luo, J. Fan, and H. Lu, Fuel 199, 22 (2017).

    Article  Google Scholar 

  5. C.Y. Wu, H.F. Yu, and F. Zhang, Trans. Nonferr. Met. Soc. China 22, 2282 (2012).

    Article  Google Scholar 

  6. J.M. Sun and P. Chen, Adv. Mater. Res. 652–654, 2570 (2013).

    Article  Google Scholar 

  7. Y. Guo, Z. Zhao, Q. Zhao, and F. Cheng, Hydrometallurgy 169, 418 (2017).

    Article  Google Scholar 

  8. A. Shemi, S. Ndlovu, V. Sibanda, and L.D.V. Dyk, Hydrometallurgy 157, 348 (2015).

    Article  Google Scholar 

  9. H. Li, J. Hui, C. Wang, W. Bao, and Z. Sun, Hydrometallurgy 147–148, 183 (2014).

    Article  Google Scholar 

  10. J. Ding, S. Ma, S. Zheng, Y. Zhang, Z. Xie, S. Shen, and Z. Liu, Hydrometallurgy 161, 58 (2016).

    Article  Google Scholar 

  11. R.C. Wang, Y.C. Zhai, W.U. Xiao-Wei, Z.Q. Ning, and M.A. Pei-Hua, Trans. Nonferr. Met. Soc. China 24, 1596 (2014).

    Article  Google Scholar 

  12. T. Zhang, G. Lv, Z. Zhang, Y. Liu, and Z. Dou, CN Patent 2017, CN107128957A.

  13. A. Movahedian, S. Raygan, and M. Pourabdoli, Thermochim. Acta 512, 93 (2011).

    Article  Google Scholar 

  14. J. Andrade-Gamboa and D.M. Pasquevich, Metall. Mater. Trans. B 31, 1439 (2000).

    Article  Google Scholar 

  15. D. Ju, D. Yan, X. Li, E. Ma, Y. Zang, and J. Li, Iron Steel Van. Tit. 31, 32 (2010) (in Chinese).

    Google Scholar 

  16. A.P. Shaw, J.S. Brusnahan, J.C. Poret, and L.A. Morris, ACS Sustain Chem. Eng. 4, 2309 (2016).

    Article  Google Scholar 

  17. I. Gaballah, E. Allain, and M. Djona, Metall. Mater. Trans. B 28, 359 (1997).

    Article  Google Scholar 

  18. G.M. Song, Y. Zhou, and Y.J. Wang, J. Mater. Sci. 37, 3541 (2002).

    Article  Google Scholar 

  19. M.R. Esquivel, A.E. Bohé, and D.M. Pasquevich, Thermochim. Acta 403, 207 (2003).

    Article  Google Scholar 

  20. J.P. Gaviría and A.E. Bohé, Metall. Mater. Trans. B 40, 45 (2009).

    Article  Google Scholar 

  21. C. Tang, J. Zhu, Z. Li, R. Zhu, Q. Zhou, J. Wei, H. He, and T. Qi, Appl. Surf. Sci. 355, 1161 (2015).

    Article  Google Scholar 

  22. N. Kanari, I. Gaballah, and E. Allain, Metall. Mater. Trans. B 30, 577 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U1710257, U1702253, 51504059), Fundamental Research Funds for the Central Universities of China (N162504016), and State Key Laboratory of Pressure Hydrometallurgical Technology of Associated Nonferrous Metal Resources (YY2016006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-An Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 249 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, TA., Lv, GZ. et al. Carbochlorination Kinetics of High-Alumina Fly Ash. JOM 71, 492–498 (2019). https://doi.org/10.1007/s11837-018-3146-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3146-z

Navigation