Skip to main content
Log in

Fatigue Behavior of Solid-State Additive Manufactured Inconel 625

  • Advances in Superalloys and Other High-Temperature Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A transformative hybrid solid-state additive manufacturing process provides a new path to fabricate or repair components with wrought-like performance. In this work, the fatigue behavior of Inconel 625 (IN625) manufactured via a high-shear deposition process is quantified for the first time. In this unique process, feedstock is deposited via a hollow non-consumable rotating cylindrical tool, thereby generating heat and plastically deforming the feedstock through controlled pressure as consecutive layers are metallurgically bonded upon a substrate. To quantify the fatigue behavior of the as-deposited IN625, stress-life experiments were conducted, where improved fatigue resistance was observed compared with the feedstock. Post-mortem analysis of the as-deposited IN625 revealed a similar fatigue nucleation and growth mechanism to the feedstock for a majority of the specimens tested in this study. Last, a microstructure-sensitive fatigue life model was utilized to elucidate structure–property fatigue mechanism relations of the as-deposited and feedstock IN625 materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.E. Murr, E. Martinez, K.N. Amato, S.M. Gaytan, J. Hernandez, D.A. Ramirez, P.W. Shindo, F. Medina, and R.B. Wicker, J. Mater. Res. Technol. 1, 42 (2012).

    Article  Google Scholar 

  2. L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, and R.B. Wicker, J. Mater. Sci. Technol. 28, 1 (2012).

    Article  Google Scholar 

  3. F.A. List, R.R. Dehoff, L.E. Lowe, and W.J. Sames, Mater. Sci. Eng. A 615, 191 (2014).

    Article  Google Scholar 

  4. E. Brandl, U. Heckenberger, V. Holzinger, and D. Buchbinder, Mater. Des. 34, 159 (2012).

    Article  Google Scholar 

  5. A. Theriault, L. Xue, and J.R. Dryden, Mater. Sci. Eng. A 516, 217 (2009).

    Article  Google Scholar 

  6. M. Rombouts, G. Maes, M. Mertens, and W. Hendrix, J. Laser Appl. 24, 052007 (2012).

    Article  Google Scholar 

  7. G.P. Dinda, A.K. Dasgupta, and J. Mazumder, Mater. Sci. Eng. A 509, 98 (2009).

    Article  Google Scholar 

  8. J.J.S. Dilip, S. Babu, S.V. Rajan, K.H. Rafi, G.D.J. Ram, and B.E. Stucker, Mater. Manuf. Process. 28, 189 (2013).

    Article  Google Scholar 

  9. S. Palanivel, P. Nelaturu, B. Glass, and R.S. Mishra, Mater. Des. 65, 934 (2015).

    Article  Google Scholar 

  10. H. Hack, R. Link, E. Knudsen, B. Baker, and S. Olig, Addit. Manuf. 14, 105 (2017).

    Article  Google Scholar 

  11. A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, and M. Chmielus, Mater. Des. 111, 482 (2016).

    Article  Google Scholar 

  12. C.P. Paul, P. Ganesh, S.K. Mishra, P. Bhargava, J. Negi, and A.K. Nath, Opt. Laser Technol. 39, 800 (2007).

    Article  Google Scholar 

  13. P. Ganesh, R. Kaul, C.P. Paul, P. Tiwari, S.K. Rai, R.C. Prasad, and L.M. Kukreja, Mater. Sci. Eng. A 527, 7490 (2010).

    Article  Google Scholar 

  14. V. Shankar, K. Bhanu Sankara Rao, and S.L. Mannan, J. Nucl. Mater. 288, 222 (2001).

    Article  Google Scholar 

  15. G. Aggen and C. Michael Allen, ASM Handbook Volume I Properties and Selection: Irons, Steels, and High-Performance Alloys (Materials Park: ASM International: The Materials Information Company, 2001).

    Google Scholar 

  16. H. Eiselstein and D. Tillack, Var. Deriv. 1 (1991).

  17. L. Mataveli Suave, J. Cormier, D. Bertheau, P. Villechaise, A. Soula, Z. Hervier, and F. Hamon, Mater. Sci. Eng. A 650, 161 (2016).

    Article  Google Scholar 

  18. O.G. Rivera, P.G. Allison, J.B. Jordon, O.L. Rodriguez, L.N. Brewer, Z. McClelland, W.R. Whittington, D. Francis, J. Su, R.L. Martens, and N. Hardwick, Mater. Sci. Eng. A 694, 1 (2017).

    Article  Google Scholar 

  19. O.G. Rivera, P.G. Allison, L.N. Brewer, O.L. Rodriguez, J.B. Jordon, T. Liu, W.R. Whittington, R.L. Martens, Z. McClelland, C.J.T. Mason, L. Garcia, J.Q. Su, and N. Hardwick, Mater. Sci. Eng. A 724, 547 (2018).

    Article  Google Scholar 

  20. L.H. Rettberg, J.B. Jordon, M.F. Horstemeyer, and J.W. Jones, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 43, 2260 (2012).

    Google Scholar 

  21. D.L. Mcdowell, Int. J. Fatigue 19, 127 (1998).

    Article  Google Scholar 

  22. D.L. McDowell, Eng. Fract. Mech. 56, 357 (1997).

    Article  Google Scholar 

  23. D.L. McDowell, K. Gall, M.F. Horstemeyer, and J. Fan, Eng. Fract. Mech. 70, 49 (2003).

    Article  Google Scholar 

  24. R.R. McCullough, J.B. Jordon, A.T. Brammer, K. Manigandan, T.S. Srivatsan, P.G. Allison, and T.W. Rushing, J. Mater. Eng. Perform. 23, 65 (2014).

    Article  Google Scholar 

  25. Y. Xue, D.L. McDowell, M.F. Horstemeyer, M.H. Dale, and J.B. Jordon, Eng. Fract. Mech. 74, 2810 (2007).

    Article  Google Scholar 

  26. R.I. Rodriguez, J.B. Jordon, P.G. Allison, T. Rushing, and L. Garcia, Mater. Sci. Eng. A 654, 236 (2016).

    Article  Google Scholar 

  27. Y. Xue, C.L. Burton, M.F. Horstemeyer, D.L. McDowell, and J.T. Berry, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 38, 601 (2007).

    Article  Google Scholar 

  28. M. Lugo, J.B. Jordon, J. Bernard, and M. Horstemeyer, SAE Technical Papers 2013-01-0980 (2013).

  29. J.D. Bernard, J.B. Jordon, M.F. Horstemeyer, H.E. Kadiri, J. Baird, D. Lamb, and A.A. Luo, Scr. Mater. 63, 751 (2010).

    Article  Google Scholar 

  30. J.B. Jordon, M.F. Horstemeyer, S.R. Daniewicz, H. Badarinarayan, and J. Grantham, J. Eng. Mater. Technol. 132, 041008 (2010).

    Article  Google Scholar 

  31. J.B. Jordon and M.F. Horstemeyer, J. Eng. Mater. Technol. 136, 021004 (2014).

    Article  Google Scholar 

  32. L.H. Rettberg, J.B. Jordon, M.F. Horstemeyer, and J.W. Jones, A Trans. 43, 2260 (2012).

    Google Scholar 

  33. M. Lugo, J.B. Jordon, K.N. Solanki, L.G. Hector, J.D. Bernard, A.A. Luo, and M.F. Horstemeyer, Int. J. Fatigue 52, 131 (2013).

    Article  Google Scholar 

  34. J.B. Jordon, J.B. Gibson, and M.F. Horstemeyer, Magnes. Technol. 2011, 55 (2011).

    Google Scholar 

  35. P.G. Allison, Y. Hammi, J.B. Jordon, and M.F. Horstemeyer, Powder Metall. 56, 388 (2013).

    Article  Google Scholar 

  36. Y. Xue, A. Pascu, M.F. Horstemeyer, L. Wang, and P.T. Wang, Acta Mater. 58, 4029 (2010).

    Article  Google Scholar 

  37. Y. Xue, D.L. McDowell, M.F. Horstemeyer, M.H. Dale, and J.B. Jordon, Eng. Fract. Mech. 74, 2810 (2007).

    Article  Google Scholar 

  38. J.M. Hughes, The Application of Uncertainty Quantification (UQ) and Sensitivity Analysis (SA) Methodologies to Engineering Models and Mechanical Experiments (Mississippi State University, 1985), pp. 553–558.

  39. D.W. Brown, A. Jain, S.R. Agnew, and B. Clausen, Mater. Sci. Forum 539–543, 3407 (2007).

    Article  Google Scholar 

  40. M. Kolbe, Mater. Sci. Eng. A319–321, 383 (2001).

    Article  Google Scholar 

  41. J.H. Zhang, Z.Q. Hu, Y.B. Xu, and Z.G. Wang, Metall. Trans. A 23A (1992).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Jordon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avery, D.Z., Rivera, O.G., Mason, C.J.T. et al. Fatigue Behavior of Solid-State Additive Manufactured Inconel 625. JOM 70, 2475–2484 (2018). https://doi.org/10.1007/s11837-018-3114-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3114-7

Navigation